Publications by authors named "Robert Underwood"

Here we present a fusiform, partially thrombosed, previously ruptured aneurysm in the posterior cerebral artery that was treated with parent vessel sacrifice after a micro-WADA and micro-balloon test occlusion (video 1). These aneurysms pose treatment challenges due to their deep location, morphology, and potentially eloquent distal supply.1 2 Primary coiling, stent assisted coiling, or microsurgical clipping are often not viable options, whereas flow diversion, parent vessel sacrifice,3 or trapping with bypass are usually employed.

View Article and Find Full Text PDF

Biofilms have been implicated in delayed wound healing, although the mechanisms by which biofilms impair wound healing are poorly understood. Many species of bacteria produce exotoxins and exoenzymes that may inhibit healing. In addition, oxygen consumption by biofilms and by the responding leukocytes, may impede wound healing by depleting the oxygen that is required for healing.

View Article and Find Full Text PDF

Bacterial biofilm has been shown to play a role in delaying wound healing of chronic wounds, a major medical problem that results in significant health care burden. A reproducible animal model could be very valuable for studying the mechanism and management of chronic wounds. Our previous work showed that Pseudomonas aeruginosa (PAO1) biofilm challenge on wounds in diabetic (db/db) mice significantly delayed wound healing.

View Article and Find Full Text PDF

This study investigates mouse cutaneous responses to long-term percutaneously implanted rods surrounded by sphere-templated porous biomaterials engineered to mimic medical devices surrounded by a porous cuff. We hypothesized that keratinocytes would migrate through the pores and stop, permigrate, or marsupialize along the porous/solid interface. Porous/solid-core poly(2-hydroxyethyl methacrylate) [poly(HEMA)] and silicone rods were implanted in mice for 14 days, and for 1, 3, and 6 months.

View Article and Find Full Text PDF

The sinus between skin and a percutaneous medical device is often a portal for infection. Epidermal integration into an optimized porous biomaterial could seal this sinus. In this study, we measured epithelial ingrowth into rods of sphere-templated porous poly(2-hydroxyethyl methacrylate) implanted percutaneously in mice.

View Article and Find Full Text PDF

Purpose: Examine the impact of "point of decision" messages on fruit selection in a single dining hall setting.

Setting: Competitive undergraduate liberal arts college in the southeastern United States.

Intervention: "Point of decision" messages were compiled into a 35-slide multimedia PowerPoint presentation.

View Article and Find Full Text PDF

Research in cutaneous biology frequently involves models that use mice housed in SPF conditions. Little information is available concerning the species of bacteria that normally inhabit the skin of these mice. The aim of this study was to characterize the bacterial skin flora of mice housed under SPF conditions.

View Article and Find Full Text PDF

Chronic wounds are a major clinical problem that lead to considerable morbidity and mortality. We hypothesized that an important factor in the failure of chronic wounds to heal was the presence of microbial biofilm resistant to antibiotics and protected from host defenses. A major difficulty in studying chronic wounds is the absence of suitable animal models.

View Article and Find Full Text PDF

Subsequent to wounding, keratinocytes must quickly restore barrier function. In vitro wound models have served to elucidate mechanisms of epithelial closure and key roles for integrins alpha6beta4 and alpha3beta1. To extrapolate in vitro data to in vivo human tissues, we used ultrathin cryomicrotomy to simultaneously observe tissue ultrastructure and immunogold localization in unwounded skin and acute human cutaneous wounds.

View Article and Find Full Text PDF

Background: Keratinocyte migration is essential for wound healing and diabetic wound keratinocytes migrate poorly. Keratinocyte migration and anchorage appears to be mediated by laminin-332 (LM-332). Impaired diabetic wound healing may be due to defective LM-332 mediated keratinocyte migration.

View Article and Find Full Text PDF

COL27A1 is a member of the collagen fibrillar gene family and is expressed in cartilaginous tissues including the anlage of endochondral bone. To begin to understand its role in skeletogenesis, the temporospatial distributions of its RNA message and protein product, type XXVII collagen, were determined in developing human skeletal tissues. Laser capture microdissection and quantitative reverse-transcription polymerase chain reaction demonstrated that gene expression occurred throughout the growth plate and that it was higher in the resting and proliferative zones than in hypertrophic cartilage.

View Article and Find Full Text PDF

Ultrahigh-resolution optical coherence tomography (OCT) was used for noninvasive in vivo evaluation of the wound healing process. Cutaneous wounds were induced by 2.5-mm diameter full-thickness punch biopsies on the dorsal surface of seven mice.

View Article and Find Full Text PDF

Percutaneous devices play an essential role in medicine; however, they are often associated with a significant risk of infection. One approach to circumvent infection would be to heal the wound around the devices by promoting skin cell attachment. We used two in vitro assay models to evaluate cutaneous response to poly(2-hydoxyethyl methacrylate) (poly(HEMA)).

View Article and Find Full Text PDF

Regeneration of mammalian digit tips is well described; however, associated cellular or molecular events have not been studied in humans. We describe an in vitro human fetal model of response to digit tip amputation, and report expression of the transcription repressor Msx1 in the developing and regrowing human digit tip. Human fetal digits from specimens ranging from 53 to 117 days' estimated gestational age (EGA) were cultured in a defined serum-free medium with supplemented oxygen for time periods from 4 days to 4 weeks.

View Article and Find Full Text PDF

The process by which wounds reepithelialize remains controversial. Two models have been proposed to describe reepithelialization: the "sliding" model and the "rolling" model. In the "sliding" model, basal keratinocytes are the principal cells responsible for migration and wound closure.

View Article and Find Full Text PDF

Percutaneous devices are indispensable in modern medicine, yet complications from their use result in significant morbidity, mortality, and cost. Bacterial biofilm at the device exit site accounts for most infections in short-term devices. We hypothesize that advanced biomaterials can be developed that facilitate attachment of skin cells to percutaneous devices, forming a seal to preclude bacterial invasion.

View Article and Find Full Text PDF

The genetically diabetic db/db mouse exhibits symptoms that resemble human type 2 diabetes mellitus, demonstrates delayed wound healing, and has been used extensively as a model to study the role of therapeutic topical reagents in wound healing. The purpose of the authors' study was to validate an excisional wound model using a 6-mm biopsy punch to create four full-thickness dorsal wounds on a single db/db mouse. Factors considered in developing the db/db wound model include reproducibility of size and shape of wounds, the effect of semiocclusive dressings, comparison with littermate controls (db/-), clinical versus histologic evidence of wound closure, and cross-contamination of wounds with topically applied reagents.

View Article and Find Full Text PDF

Adult stem cells offer the potential to treat many diseases through a combination of ex vivo genetic manipulation and autologous transplantation. Mesenchymal stem cells (MSCs, also referred to as marrow stromal cells) are adult stem cells that can be isolated as proliferating, adherent cells from bones. MSCs can differentiate into multiple cell types present in several tissues, including bone, fat, cartilage, and muscle, making them ideal candidates for a variety of cell-based therapies.

View Article and Find Full Text PDF

Patients with diabetic neuropathy have reduced numbers of cutaneous nerves, which may contribute to an increased incidence of nonhealing wounds. Nerve growth factor (NGF) has been reported to augment wound closure. We hypothesized that topical 2.

View Article and Find Full Text PDF

A significant impediment to studying hypertrophic scar is the lack of an animal model. We have confirmed similarities between scarring in the female red Duroc pig (FRDP) and human hypertrophic scar and conclude that this model warrants validation. Reports have suggested that the cutaneous nervous system may play a role in hypertrophic scar development and several studies have shown nerve density in hypertrophic scar to be increased.

View Article and Find Full Text PDF

The topological relationships between erbB receptors and ligands of the epidermal growth factor family were characterized by immunocytochemistry in normal and psoriatic epidermis and in proliferating and differentiating human keratinocytes in culture. Spatial colocalization of receptors and ligands was assessed by dual immunostaining. Expression of epidermal growth factor receptor (EGFr), erbB2, and erbB3, but not erbB4, was detected throughout the epidermis, although labeling for erbB2 and erbB3 was accentuated in the upper spinous layers, and EGFr was more strongly labeled in basal cells.

View Article and Find Full Text PDF

Background. Patients with diabetic sensory neuropathy have significant risk of chronic ulcers. Insufficient nerve-derived mediators such as substance P (SP) may contribute to the impaired response to injury.

View Article and Find Full Text PDF