Glyco disulfide gold nanoparticles (GDAuNPs) were prepared by three methods: direct, photochemical irradiation and ligand substitution. Glyco disulfide acted as reducing and capping agents of gold ions, to produce AuNPs . Shorter chains of glyco disulfides (n = 1 and 2) offered monodispersed and stable GDAuNPs in physiological pH, while longer chains (n = 3) furnished unstable nanoparticles.
View Article and Find Full Text PDFGlyco-gold nanoparticles (AuNPs) in aqueous dispersions were prepared by two approaches, namely direct reduction and ligand substitution methods. In the direct method, potassium salts of glyco thiols, with the general formula (CHO)NH(CH) CHSK (where , = 1; , = 2; , = 3, , = 4; , = 5), were used as reducing and capping agents to give the glyco thiolate capped gold nanoparticles (AuNPs -); meanwhile in the ligand exchange experiments, - and their acetylated forms (-) replaced citrate ions in citrate-capped gold nanoparticles to give additional AuNPs -. UV-visible spectroscopy, surface charge (-potential,) measurements and transmission electron microscopy (TEM) were used for physical and chemical characterization of all the resultant AuNPs.
View Article and Find Full Text PDFSurface-modified gold nanoparticles (AuNPs) are nanomaterials that hold promise in drug delivery applications. In this study, the cytotoxicity, uptake, intracellular localization, and the exocytosis of citrate-stabilized (Cit-AuNP) and polyethylene glycol (PEG)-modified gold nanoparticles with the carboxyl (COOH) terminal functional group were assessed in human embryonic kidney (HEK 293) and the human caucasian hepatocytes carcinoma (Hep G2) cell systems, representing two major accumulation sites for AuNPs. The zeta (ζ)-potential measurements confirmed the negative surface charge of the AuNPs in water and in cell growth medium.
View Article and Find Full Text PDFHigh affinity thiolate-based polymeric capping ligands are known to impart stability onto nanosized gold nanoparticles. Due to the stable gold-sulfur bond, the ligand forms a protective layer around the gold core and subsequently controls the physicochemical properties of the resultant nanogold mononuclear protected clusters (AuMPCs). The choice of ligands to use as surfactants for AuMPCs largely depends on the desired degree of hydrophilicity and biocompatibility of the MPCs, normally dictated by the intended application.
View Article and Find Full Text PDFA rapid dual channel lateral flow assay for the detection of Mycobacterium Tuberculosis antibodies (MTB 38 kDa monoclonal antibody) in human blood was developed. The MTB 6-14-38 kDa fusion antigen and anti-Protein A were used as the capture proteins for test and control lines respectively. Protein A labeled 40 nm gold nanoparticles were used as the detection conjugate.
View Article and Find Full Text PDFBackground: Reliable in vitro toxicity testing is needed prior to the commencement of in vivo testing necessary for hazard identification and risk assessment of nanoparticles. In this study, the cytotoxicity and uptake of 14 nm and 20 nm citrate stabilised gold nanoparticles (AuNPs) in the bronchial epithelial cell line BEAS-2B, the Chinese hamster ovary cell line CHO, and the human embryonic kidney cell line HEK 293 were investigated.
Methods: Cytotoxicity of the AuNPs was assessed via traditional XTT-, LDH-, and ATP-based assays, followed by cell impedance studies.
Gold nanoparticles (AuNPs) in aqueous 0.10 M HCl are shown to be electroactive at oxidising potentials greater than 1.0 V (vs.
View Article and Find Full Text PDFVariants of lipase were attached to gold nanoparticles (NPs) and their enzymatic activity was studied. The two bioengineered lipase variants have been prepared with biotin groups attached to different residues on the protein outer surface. The biotinylation was evidenced by denaturing polyacrylamide gel electrophoresis and quantified by the ([2-(4'-hydroxyazobenzene)]benzoic acid spectrophotometric test.
View Article and Find Full Text PDFSurface electrochemistry of novel monolayer-protected gold nanoparticles (MPCAuNPs) is described. Protecting ligands, (1-sulfanylundec-11-yl)tetraethylene glycol (PEG-OH) and (1-sulfanylundec-11-yl)poly(ethylene glycol)ic acid (PEG-COOH), of three different percent ratios (PEG-COOH:PEG-OH), 1:99 (MPCAuNP-COOH(1%)), 50:50 (MPCAuNP-COOH(50%)), and 99:1 (MPCAuNP-COOH(99%)), were studied. The electron transfer rate constants (k(et)/s(-1)) in organic medium decreased as the concentration of the surface-exposed -COOH group in the protecting monolayer ligand is increased: MPCAuNP-COOH(1%) (approximately 5 s(-1)) > MPCAuNP-COOH(50%) (approximately 4 s(-1)) > MPCAuNP-COOH(99%) (approximately 0.
View Article and Find Full Text PDFA simple and versatile method for the preparation of functional enzyme-gold nanoparticle conjugates using "click" chemistry has been developed. In a copper-catalyzed 1,2,3-triazole cycloaddition, an acetylene-functionalized Thermomyces lanuginosus lipase has been attached to azide-functionalized water-soluble gold nanoparticles under retention of enzymatic activity. The products have been characterized by gel electrophoresis and a fluorometric lipase activity assay.
View Article and Find Full Text PDF