Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells.
View Article and Find Full Text PDFLineage transcription factors (TFs) provide one regulatory level of differentiation crucial for the generation and maintenance of healthy tissues. To probe TF function by measuring their dynamics during adult intestinal homeostasis, we established HILO-illumination-based live-cell single-molecule tracking (SMT) in mouse small intestinal enteroid monolayers recapitulating tissue differentiation hierarchies in vitro. To increase the throughput, capture cellular features, and correlate morphological characteristics with diffusion parameters, we developed an automated imaging and analysis pipeline, broadly applicable to two-dimensional culture systems.
View Article and Find Full Text PDFDuring human development, a temporary organ is formed, the placenta, which invades the uterine wall to support nutrient, oxygen, and waste exchange between the mother and fetus until birth. Most of the human placenta is formed by a syncytial villous structure lined by syncytialized trophoblasts, a specialized cell type that forms via cell-cell fusion of underlying progenitor cells. Genetic and functional studies have characterized the membrane protein fusogens Syncytin-1 and Syncytin-2, both of which are necessary and sufficient for human trophoblast cell-cell fusion.
View Article and Find Full Text PDFTranscription coactivators are proteins or protein complexes that mediate transcription factor (TF) function. However, they lack DNA-binding capacity, prompting the question of how they engage target loci. Three non-exclusive hypotheses have been posited: coactivators are recruited by complexing with TFs, by binding histones through epigenetic reader domains, or by partitioning into condensates through their extensive intrinsically disordered regions.
View Article and Find Full Text PDFLoss-of-function mutations in cause Rett syndrome (RTT), a severe neurological disorder that mainly affects girls. Mutations in do occur in males occasionally and typically cause severe encephalopathy and premature lethality. Recently, we identified a missense mutation (c.
View Article and Find Full Text PDFRecombinant adeno-associated viral vectors (rAAV) are a powerful tool for gene delivery but have a limited DNA carrying capacity. Efforts to expand this genetic payload have focused on engineering the vector components, such as dual trans-splicing vectors which double the delivery size by exploiting the natural concatenation of rAAV genomes in host nuclei. We hypothesized that inefficient dual vector transduction could be improved by modulating host factors which affect concatenation.
View Article and Find Full Text PDFType 2 Nuclear Receptors (T2NRs) require heterodimerization with a common partner, the Retinoid X Receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and over-expression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells.
View Article and Find Full Text PDFTranscription coactivators are proteins or protein complexes that mediate transcription factor (TF) function. However, they lack DNA binding capacity, prompting the question of how they engage target loci. Three non-exclusive hypotheses have been posited: coactivators are recruited by complexing with TFs, by binding histones through epigenetic reader domains, or by partitioning into phase-separated compartments through their extensive intrinsically disordered regions (IDRs).
View Article and Find Full Text PDFHow molecules interact governs how they move. Single-molecule tracking (SMT) thus provides a unique window into the dynamic interactions of biomolecules within live cells. Using transcription regulation as a case study, we describe how SMT works, what it can tell us about molecular biology, and how it has changed our perspective on the inner workings of the nucleus.
View Article and Find Full Text PDFIt remains unclear why acute depletion of CTCF (CCCTC-binding factor) and cohesin only marginally affects expression of most genes despite substantially perturbing three-dimensional (3D) genome folding at the level of domains and structural loops. To address this conundrum, we used high-resolution Micro-C and nascent transcript profiling in mouse embryonic stem cells. We find that enhancer-promoter (E-P) interactions are largely insensitive to acute (3-h) depletion of CTCF, cohesin or WAPL.
View Article and Find Full Text PDFTranscription factors (TFs) are classically attributed a modular construction, containing well-structured sequence-specific DNA-binding domains (DBDs) paired with disordered activation domains (ADs) responsible for protein-protein interactions targeting co-factors or the core transcription initiation machinery. However, this simple division of labor model struggles to explain why TFs with identical DNA-binding sequence specificity determined in vitro exhibit distinct binding profiles in vivo. The family of hypoxia-inducible factors (HIFs) offer a stark example: aberrantly expressed in several cancer types, HIF-1α and HIF-2α subunit isoforms recognize the same DNA motif in vitro - the hypoxia response element (HRE) - but only share a subset of their target genes in vivo, while eliciting contrasting effects on cancer development and progression under certain circumstances.
View Article and Find Full Text PDFMany principles of bacterial gene regulation have been foundational to understanding mechanisms of eukaryotic transcription. However, stark structural and functional differences exist between eukaryotic and bacterial transcription factors that complicate inferring properties of the eukaryotic system from that of bacteria. Here, we review those differences, focusing on the impact of intrinsically disordered regions on the thermodynamic and kinetic parameters governing eukaryotic transcription factor interactions-both with other proteins and with chromatin.
View Article and Find Full Text PDFSingle-particle tracking (SPT) directly measures the dynamics of proteins in living cells and is a powerful tool to dissect molecular mechanisms of cellular regulation. Interpretation of SPT with fast-diffusing proteins in mammalian cells, however, is complicated by technical limitations imposed by fast image acquisition. These limitations include short trajectory length due to photobleaching and shallow depth of field, high localization error due to the low photon budget imposed by short integration times, and cell-to-cell variability.
View Article and Find Full Text PDFSingle-molecule imaging provides a powerful way to study biochemical processes in live cells, yet it remains challenging to track single molecules while simultaneously detecting their interactions. Here, we describe a novel property of rhodamine dyes, proximity-assisted photoactivation (PAPA), in which one fluorophore (the 'sender') can reactivate a second fluorophore (the 'receiver') from a dark state. PAPA requires proximity between the two fluorophores, yet it operates at a longer average intermolecular distance than Förster resonance energy transfer (FRET).
View Article and Find Full Text PDFGene activation by mammalian transcription factors (TFs) requires multivalent interactions of their low-complexity domains (LCDs), but how such interactions regulate transcription remains unclear. It has been proposed that extensive LCD-LCD interactions culminating in liquid-liquid phase separation (LLPS) of TFs is the dominant mechanism underlying transactivation. Here, we investigated how tuning the amount and localization of LCD-LCD interactions in vivo affects transcription of endogenous human genes.
View Article and Find Full Text PDFHow distal -regulatory elements (e.g., enhancers) communicate with promoters remains an unresolved question of fundamental importance.
View Article and Find Full Text PDFExtrachromosomal DNA (ecDNA) is prevalent in human cancers and mediates high expression of oncogenes through gene amplification and altered gene regulation. Gene induction typically involves cis-regulatory elements that contact and activate genes on the same chromosome. Here we show that ecDNA hubs-clusters of around 10-100 ecDNAs within the nucleus-enable intermolecular enhancer-gene interactions to promote oncogene overexpression.
View Article and Find Full Text PDFThe SAGA complex is a regulatory hub involved in gene regulation, chromatin modification, DNA damage repair and signaling. While structures of yeast SAGA (ySAGA) have been reported, there are noteworthy functional and compositional differences for this complex in metazoans. Here we present the cryogenic-electron microscopy (cryo-EM) structure of human SAGA (hSAGA) and show how the arrangement of distinct structural elements results in a globally divergent organization from that of yeast, with a different interface tethering the core module to the TRRAP subunit, resulting in a dramatically altered geometry of functional elements and with the integration of a metazoan-specific splicing module.
View Article and Find Full Text PDFIn this short Perspective, we discuss how recent dynamic live-cell imaging experiments have challenged our understanding of mechanisms driving functional molecular interactions in vivo. While we have generally considered the formation of functional biomolecular complexes as resulting from the stable assembly of two or more partner molecules, here we entertain the possibility that function may actually be maintained while molecules are rapidly exchanged within a complex. We postulate that at high effective concentrations, even very weak interactions can lead to strong binding site occupancy and thereby mediate function in a highly dynamic fashion.
View Article and Find Full Text PDFThe most common method for RNA detection involves reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR) analysis. Commercial one-step master mixes-which include both a reverse transcriptase and a thermostable polymerase and thus allow performing both the RT and qPCR steps consecutively in a sealed well-are key reagents for SARS-CoV-2 diagnostic testing; yet, these are typically expensive and have been affected by supply shortages in periods of high demand. As an alternative, we describe here how to express and purify Taq polymerase and M-MLV reverse transcriptase and assemble a homemade one-step RT-qPCR master mix.
View Article and Find Full Text PDFAccurate abundance measurements of cellular proteins are required to achieve a quantitative and predictive understanding of any biological process inside the cell. Existing methods to determine absolute protein abundances are labor-intensive and/or require sophisticated experimental and computational infrastructure (, fluorescence correlation spectroscopy (FCS)-calibrated imaging and quantitative mass spectrometry). Here we detail a straightforward flow cytometry-based method to measure the absolute abundance of any Halo-tagged protein in live cells that uses a standard mammalian cell line with a known number of Halo-CTCF proteins recently characterized in our lab.
View Article and Find Full Text PDF