Publications by authors named "Robert TePoele"

Mediator-associated kinases CDK8/19 are context-dependent drivers or suppressors of tumorigenesis. Their inhibition is predicted to have pleiotropic effects, but it is unclear whether this will impact on the clinical utility of CDK8/19 inhibitors. We discovered two series of potent chemical probes with high selectivity for CDK8/19.

View Article and Find Full Text PDF

There is unmet need for chemical tools to explore the role of the Mediator complex in human pathologies ranging from cancer to cardiovascular disease. Here we determine that CCT251545, a small-molecule inhibitor of the WNT pathway discovered through cell-based screening, is a potent and selective chemical probe for the human Mediator complex-associated protein kinases CDK8 and CDK19 with >100-fold selectivity over 291 other kinases. X-ray crystallography demonstrates a type 1 binding mode involving insertion of the CDK8 C terminus into the ligand binding site.

View Article and Find Full Text PDF

WNT signaling is frequently deregulated in malignancy, particularly in colon cancer, and plays a key role in the generation and maintenance of cancer stem cells. We report the discovery and optimization of a 3,4,5-trisubstituted pyridine 9 using a high-throughput cell-based reporter assay of WNT pathway activity. We demonstrate a twisted conformation about the pyridine-piperidine bond of 9 by small-molecule X-ray crystallography.

View Article and Find Full Text PDF

Purpose: Preoperative chemotherapy has demonstrated a survival benefit for patients with potentially resectable esophageal cancer; however, currently it is not possible to predict the benefit of this treatment for an individual patient. This prospective study was designed to correlate gene expression profiles with clinical outcome in this setting.

Patients And Methods: Eligible patients were deemed to have resectable disease after staging by computed tomography, endoscopic ultrasound, and laparoscopy as indicated and following discussion at the multidisciplinary team meeting.

View Article and Find Full Text PDF

Purpose: The impact of the presence of a germ-line BRCA1 mutation on gene expression in normal breast fibroblasts after radiation-induced DNA damage has been investigated.

Experimental Design: High-density cDNA microarray technology was used to identify differential responses to DNA damage in fibroblasts from nine heterozygous BRCA1 mutation carriers compared with five control samples without personal or family history of any cancer. Fibroblast cultures were irradiated, and their expression profile was compared using intensity ratios of the cDNA microarrays representing 5603 IMAGE clones.

View Article and Find Full Text PDF