Mutations in Amyloid-ß Precursor Protein (APP) and BRI2/ITM2b genes cause Familial Alzheimer and Danish Dementias (FAD/FDD), respectively. APP processing by BACE1, which is inhibited by BRI2, yields sAPPß and ß-CTF. ß-CTF is cleaved by gamma-secretase to produce Aß.
View Article and Find Full Text PDFBackground: Mutations in either Aβ Precursor protein (APP) or genes that regulate APP processing, such as BRI2/ITM2B and PSEN1/PSEN2, cause familial dementias. Although dementias due to APP/PSEN1/PSEN2 mutations are classified as familial Alzheimer disease (FAD) and those due to mutations in BRI2/ITM2B as British and Danish dementias (FBD, FDD), data suggest that these diseases have a common pathogenesis involving toxic APP metabolites. It was previously shown that FAD mutations in APP and PSENs promote activation of caspases leading to the hypothesis that aberrant caspase activation could participate in AD pathogenesis.
View Article and Find Full Text PDFProcessing of Aβ-precursor protein (APP) plays an important role in Alzheimer's disease (AD) pathogenesis. The APP intracellular domain contains residues important in regulating APP function and processing, in particular the 682YENPTY687 motif. To dissect the functions of this sequence in vivo, we created an APP knock-in allele mutating Y682 to Gly (APP(YG/YG) mice).
View Article and Find Full Text PDFBackground: A mutation in the BRI2/ITM2b gene causes familial Danish dementia (FDD). BRI2 is an inhibitor of amyloid-β precursor protein (APP) processing, which is genetically linked to Alzheimer's disease (AD) pathogenesis. The FDD mutation leads to a loss of BRI2 protein and to increased APP processing.
View Article and Find Full Text PDFFamilial British Dementia (FBD) is caused by an autosomal dominant mutation in the BRI2/ITM2B gene (Vidal et al., 1999). FBD(KI) mice are a model of FBD that is genetically congruous to the human disease, because they carry one mutant and one wild-type Bri2/Itm2b allele.
View Article and Find Full Text PDFA mutation in the BRI2/ITM2b gene causes loss of BRI2 protein leading to familial Danish dementia (FDD). BRI2 deficiency of FDD provokes an increase in amyloid-β precursor protein (APP) processing since BRI2 is an inhibitor of APP proteolysis, and APP mediates the synaptic/memory deficits in FDD. APP processing is linked to Alzheimer disease (AD) pathogenesis, which is consistent with a common mechanism involving toxic APP metabolites in both dementias.
View Article and Find Full Text PDFAn autosomal dominant mutation in the BRI2/ITM2B gene causes Familial Danish Dementia (FDD). We have generated a mouse model of FDD, called FDDKI, genetically congruous to the human disease. These mice carry one mutant and one wild type Bri2/Itm2b allele, like FDD patients.
View Article and Find Full Text PDFAn autosomal dominant mutation in the BRI2/ITM2B gene causes familial Danish dementia (FDD). Analysis of FDD(KI) mice, a mouse model of FDD genetically congruous to the human disease since they carry one mutant and one wild-type Bri2/Itm2b allele, has shown that the Danish mutation causes loss of Bri2 protein, synaptic plasticity and memory impairments. BRI2 is a physiological interactor of Aβ-precursor protein (APP), a gene associated with Alzheimer disease, which inhibits processing of APP.
View Article and Find Full Text PDFBackground: The pathogenesis of Alzheimer's disease is attributed to misfolding of Amyloid-β (Aβ) peptides. Aβ is generated during amyloidogenic processing of Aβ-precursor protein (APP). Another characteristic of the AD brain is increased phosphorylation of APP amino acid Tyr(682).
View Article and Find Full Text PDFAccording to the prevailing "amyloid cascade hypothesis," genetic dementias such as Alzheimer's disease and familial Danish dementia (FDD) are caused by amyloid deposits that trigger tauopathy, neurodegeneration, and behavioral/cognitive alterations. To efficiently reproduce amyloid lesions, murine models of human dementias invariably use transgenic expression systems. However, recent FDD transgenic models showed that Danish amyloidosis does not cause memory defects, suggesting that other mechanisms cause Danish dementia.
View Article and Find Full Text PDFFamilial dementias, which include Alzheimer disease (AD), familial British dementia (FBD), and familial Danish dementia (FDD), are caused by dominantly inherited autosomal mutations and are characterized by the production of amyloidogenic peptides, neurofibrillary tangles (NFTs) and neurodegeneration (St George-Hyslop and Petit, 2005; Garringer et al., 2009). The prevailing pathogenic theory, the "amyloid cascade hypothesis" (Hardy and Selkoe, 2002), posits that the accumulation of amyloidogenic peptides triggers tauopathy, neurodegeneration, and cognitive and behavioral changes.
View Article and Find Full Text PDFIn this work we have probed the interactions of the amyloid Aβ(1-42) peptide with self-assembled nanospheres. The nanospheres were formed by self-assembly of a newly developed bolaamphiphile bis(N-alpha-amido-methionine)-1,8 octane dicarboxylate under aqueous conditions. It was found that the interactions of the Aβ(1-42) peptide with the nanospheres were concentration as well as pH dependent and the peptide largely adopts a random coil structure upon interacting with the nanospheres.
View Article and Find Full Text PDFBackground: Brain tissue from patients with Alzheimer's disease has shown an increase of phosphorylation of Tyr-682, located on the conserved Y682ENPTY motif, and Thr-668 residues, both in the intracellular domain (AID) of amyloid beta precursor protein (APP), although the role of these two residues is not yet known.
Results: Here, we report that the phosphorylation status of Tyr-682, and in some cases Thr-668, shapes the APP interactome. It creates a docking site for SH2-domain containing proteins, such as ShcA, ShcB, ShcC, Grb7, Grb2, as well as adapter proteins, such as Crk and Nck, that regulate important biological processes, cytosolic tyrosine kinases, such as Abl, Lyn and Src, which regulate signal transduction pathways, and enzymes that control phosphatidylinositols levels and signaling, such as PLC-gamma.
Colloids Surf B Biointerfaces
November 2007
Microtubular structures were self-assembled in aqueous media from a newly synthesized bolaamphiphile, bis(N-alpha-amido-tyrosyl-tyrosyl-tyrosine)-1,5-pentane dicarboxylate. In order to increase the biocompatibility of the microtubules, they were functionalized with the peptide sequence GRGDSP. Further, calcium phosphate nanocrystals were grown on the microtubules.
View Article and Find Full Text PDF