To successfully mount infections, nearly all bacterial pathogens must acquire iron, a key metal cofactor that primarily resides within human hemoglobin. causes the life-threatening respiratory disease diphtheria and captures hemoglobin for iron scavenging using the surface-displayed receptor HbpA. Here, we show using X-ray crystallography, NMR, and in situ binding measurements that selectively captures iron-loaded hemoglobin by partially ensconcing the heme molecules of its α subunits.
View Article and Find Full Text PDFToxin-producing strains are the etiological agents of the severe upper respiratory disease, diphtheria. A global phylogenetic analysis revealed that biotype gravis is particularly lethal as it produces diphtheria toxin and a range of other virulence factors, particularly when it encounters low levels of iron at sites of infection. To gain insight into how it colonizes its host, we have identified iron-dependent changes in the exoproteome and surfaceome of strain 1737 using a combination of whole-cell fractionation, intact cell surface proteolysis, and quantitative proteomics.
View Article and Find Full Text PDFIntroduction: Several species of cellulolytic bacteria display cellulosomes, massive multi-cellulase containing complexes that degrade lignocellulosic plant biomass (LCB). A greater understanding of cellulosome structure and enzyme content could facilitate the development of new microbial-based methods to produce renewable chemicals and materials.
Methods: To identify novel cellulosome-displaying microbes we searched 305,693 sequenced bacterial genomes for genes encoding cellulosome proteins; dockerin-fused glycohydrolases (DocGHs) and cohesin domain containing scaffoldins.
Clostridium thermocellum is a potential microbial platform to convert abundant plant biomass to biofuels and other renewable chemicals. It efficiently degrades lignocellulosic biomass using a surface displayed cellulosome, a megadalton sized multienzyme containing complex. The enzymatic composition and architecture of the cellulosome is controlled by several transmembrane biomass-sensing RsgI-type anti-σ factors.
View Article and Find Full Text PDFGram-positive bacteria display pili whose protein components (pilins) are covalently crosslinked by pilus-specific sortase enzymes. These cysteine transpeptidase enzymes catalyze a transpeptidation reaction that joins the pilins together via lysine isopeptide bonds. The crosslinking reaction that builds the SpaA pilus in Corynebacterium diphtheriae is mediated by the SrtA sortase (SrtA) and has been reconstituted in vitro.
View Article and Find Full Text PDFHeme is the most abundant source of iron in the human body and is actively scavenged by bacterial pathogens during infections. Corynebacterium diphtheriae and other species of actinobacteria scavenge heme using cell wall associated and secreted proteins that contain Conserved Region (CR) domains. Here we report the development of a fluorescent sensor to measure heme transfer from the C-terminal CR domain within the HtaA protein (CR2) to other hemoproteins within the heme-uptake system.
View Article and Find Full Text PDFMany species of pathogenic gram-positive bacteria display covalently crosslinked protein polymers (called pili or fimbriae) that mediate microbial adhesion to host tissues. These structures are assembled by pilus-specific sortase enzymes that join the pilin components together via lysine-isopeptide bonds. The archetypal SpaA pilus from Corynebacterium diphtheriae is built by the SrtA pilus-specific sortase, which crosslinks lysine residues within the SpaA and SpaB pilins to build the shaft and base of the pilus, respectively.
View Article and Find Full Text PDFMany species of pathogenic gram-positive bacteria display covalently crosslinked protein polymers (called pili or fimbriae) that mediate microbial adhesion to host tissues. These structures are assembled by pilus-specific sortase enzymes that join the pilin components together via lysine-isopeptide bonds. The archetypal SpaA pilus from is built by the SrtA pilus-specific sortase, which crosslinks lysine residues within the SpaA and SpaB pilins to build the shaft and base of the pilus, respectively.
View Article and Find Full Text PDF(group A ) is a clinically important microbial pathogen that requires iron in order to proliferate. During infections, uses the surface displayed Shr receptor to capture human hemoglobin (Hb) and acquires its iron-laden heme molecules. Through a poorly understood mechanism, Shr engages Hb via two structurally unique N-terminal Hb-interacting domains (HID1 and HID2) which facilitate heme transfer to proximal NEAr Transporter (NEAT) domains.
View Article and Find Full Text PDFPathogenic Staphylococcus aureus actively acquires iron from human hemoglobin (Hb) using the IsdH surface receptor. Heme extraction is mediated by a tri-domain unit within the receptor that contains its second (N2) and third (N3) NEAT domains joined by a helical linker domain. Extraction occurs within a dynamic complex, in which receptors engage each globin chain; the N2 domain tightly binds to Hb, while substantial inter-domain motions within the receptor enable its N3 domain to transiently distort the globin's heme pocket.
View Article and Find Full Text PDFClostridium thermocellum is actively being developed as a microbial platform to produce biofuels and chemicals from renewable plant biomass. An attractive feature of this bacterium is its ability to efficiently degrade lignocellulose using surface-displayed cellulosomes, large multi-protein complexes that house different types of cellulase enzymes. Clostridium thermocellum tailors the enzyme composition of its cellulosome using nine membrane-embedded anti-σ factors (RsgI1-9), which are thought to sense different types of extracellular carbohydrates and then elicit distinct gene expression programs via cytoplasmic σ factors.
View Article and Find Full Text PDFWall teichoic acid (WTA) polymers are covalently affixed to the Gram-positive bacterial cell wall and have important functions in cell elongation, cell morphology, biofilm formation, and β-lactam antibiotic resistance. The first committed step in WTA biosynthesis is catalyzed by the TagA glycosyltransferase (also called TarA), a peripheral membrane protein that produces the conserved linkage unit, which joins WTA to the cell wall peptidoglycan. TagA contains a conserved GT26 core domain followed by a C-terminal polypeptide tail that is important for catalysis and membrane binding.
View Article and Find Full Text PDFHemoproteins are widely researched because they contain redox-active heme prosthetic groups (iron + protoporphyrin IX) that enable them to perform a range of vital functions, acting as enzymes, participants in electron transfer reactions, or gas sensing, carrying, and storage proteins. While the heme prosthetic group is almost always essential for hemoprotein function, it is frequently desirable to remove it from the protein to enable biochemical or protein engineering studies. Obtaining high yields of the apo form of the hemoprotein can be challenging since high heme-protein binding affinities necessitate the use of harsh conditions to remove heme.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2021
Gram-positive bacteria assemble pili (fimbriae) on their surfaces to adhere to host tissues and to promote polymicrobial interactions. These hair-like structures, although very thin (1 to 5 nm), exhibit impressive tensile strengths because their protein components (pilins) are covalently crosslinked together via lysine-isopeptide bonds by pilus-specific sortase enzymes. While atomic structures of isolated pilins have been determined, how they are joined together by sortases and how these interpilin crosslinks stabilize pilus structure are poorly understood.
View Article and Find Full Text PDFIron is an important micronutrient that is required by bacteria to proliferate and to cause disease. Many bacterial pathogens forage iron from human hemoglobin (Hb) during infections, which contains this metal within heme (iron-protoporphyrin IX). Several clinically important pathogenic species within the Firmicutes phylum scavenge heme using surface-displayed or secreted NEAr Transporter (NEAT) domains.
View Article and Find Full Text PDFSortase enzymes are attractive antivirulence drug targets that attach virulence factors to the surface of Staphylococcus aureus and other medically significant bacterial pathogens. Prior efforts to discover a useful sortase inhibitor have relied upon an in vitro activity assay in which the enzyme is removed from its native site on the bacterial surface and truncated to improve solubility. To discover inhibitors that are effective in inactivating sortases in vivo, we developed and implemented a novel cell-based screen using Actinomyces oris, a key colonizer in the development of oral biofilms.
View Article and Find Full Text PDFSite-specifically modified protein bioconjugates have important applications in biology, chemistry, and medicine. Functionalizing specific protein side chains with enzymes using mild reaction conditions is of significant interest, but remains challenging. Recently, the lysine-isopeptide bond forming activity of the sortase enzyme that builds surface pili in (SrtA) has been reconstituted .
View Article and Find Full Text PDFThe functions of enzymes can be strongly affected by their higher-order spatial arrangements. In this study we combine multiple new technologies-designer protein cages and sortase-based enzymatic attachments between proteins-as a novel platform for organizing multiple enzymes (of one or more types) in specified configurations. As a scaffold we employ a previously characterized 24-subunit designed protein cage whose termini are outwardly exposed for attachment.
View Article and Find Full Text PDFIron is an essential nutrient that is actively acquired by bacterial pathogens during infections. Clinically important Staphylococcus aureus obtains iron by extracting heme from hemoglobin (Hb) using the closely related IsdB and IsdH surface receptors. In IsdH, extraction is mediated by a conserved tridomain unit that contains its second (N2) and third (N3) NEAT domains joined by a helical linker, called IsdH.
View Article and Find Full Text PDFAssembly of pili on the gram-positive bacterial cell wall involves 2 conserved transpeptidase enzymes named sortases: One for polymerization of pilin subunits and another for anchoring pili to peptidoglycan. How this machine controls pilus length and whether pilus length is critical for cell-to-cell interactions remain unknown. We report here in , a key colonizer in the development of oral biofilms, that genetic disruption of its housekeeping sortase SrtA generates exceedingly long pili, catalyzed by its pilus-specific sortase SrtC2 that possesses both pilus polymerization and cell wall anchoring functions.
View Article and Find Full Text PDFIron is a versatile metal cofactor that is used in a wide range of essential cellular processes. During infections, many bacterial pathogens acquire iron from human hemoglobin (Hb), which contains the majority of the body's total iron content in the form of heme (iron protoporphyrin IX). Clinically important Gram-positive bacterial pathogens scavenge heme using an array of secreted and cell-wall-associated receptors that contain NEAr-iron Transporter (NEAT) domains.
View Article and Find Full Text PDFStaphylococcus aureus and other bacterial pathogens affix wall teichoic acids (WTAs) to their surface. These highly abundant anionic glycopolymers have critical functions in bacterial physiology and their susceptibility to β-lactam antibiotics. The membrane-associated TagA glycosyltransferase (GT) catalyzes the first-committed step in WTA biosynthesis and is a founding member of the WecB/TagA/CpsF GT family, more than 6,000 enzymes that synthesize a range of extracellular polysaccharides through a poorly understood mechanism.
View Article and Find Full Text PDF