Publications by authors named "Robert T Lawrence"

Article Synopsis
  • Obesity is a significant health issue, impacting over 40% of US adults and 13% of the global population, and current treatments have not effectively reduced obesity rates.
  • Researchers are exploring a new drug, BAM15, which works by uncoupling metabolism in mitochondria to reduce caloric efficiency.
  • BAM15 has shown promising results by decreasing body fat and improving insulin sensitivity without affecting food intake, lean body mass, or causing any toxic effects.
View Article and Find Full Text PDF

Stimulating brown adipose tissue (BAT) activity represents a promising therapy for overcoming metabolic diseases. mTORC2 is important for regulating BAT metabolism, but its downstream targets have not been fully characterized. In this study, we apply proteomics and phosphoproteomics to investigate the downstream effectors of mTORC2 in brown adipocytes.

View Article and Find Full Text PDF

Proteins can be phosphorylated at neighboring sites resulting in different functional states, and studying the regulation of these sites has been challenging. Here we present Thesaurus, a search engine that detects and quantifies phosphopeptide positional isomers from parallel reaction monitoring and data-independent acquisition mass spectrometry experiments. We apply Thesaurus to analyze phosphorylation events in the PI3K/AKT signaling pathway and show neighboring sites with distinct regulation.

View Article and Find Full Text PDF

Data independent acquisition (DIA) mass spectrometry is a powerful technique that is improving the reproducibility and throughput of proteomics studies. Here, we introduce an experimental workflow that uses this technique to construct chromatogram libraries that capture fragment ion chromatographic peak shape and retention time for every detectable peptide in a proteomics experiment. These coordinates calibrate protein databases or spectrum libraries to a specific mass spectrometer and chromatography setup, facilitating DIA-only pipelines and the reuse of global resource libraries.

View Article and Find Full Text PDF

The cost of treating all incarcerated people who have hepatitis C with direct-acting antiviral agents (DAAs) greatly stresses correctional facility budgets. Complex federal laws bar pharmaceutical companies from simply discounting expensive medications to prices that facilities can afford. This article discusses means by which correctional facilities may qualify under federal law as "safety-net providers" to allow sale of DAAs at a price <10% of the average manufacturer price (AMP).

View Article and Find Full Text PDF

An estimated 30% of Americans with hepatitis C virus (HCV) pass through a jail or prison annually. One in 7 incarcerated persons is viremic. Screening and treatment is cost-effective and beneficial to society as a whole.

View Article and Find Full Text PDF

Lipins 1, 2, and 3 are Mg-dependent phosphatidic acid phosphatases and catalyze the penultimate step of triacylglycerol synthesis. We have previously investigated the biochemistry of lipins 1 and 2 and shown that di-anionic phosphatidic acid (PA) augments their activity and lipid binding and that lipin 1 activity is negatively regulated by phosphorylation. In the present study, we show that phosphorylation does not affect the catalytic activity of lipin 3 or its ability to associate with PA The lipin proteins each contain a conserved polybasic domain (PBD) composed of nine lysine and arginine residues located between the conserved N- and C-terminal domains.

View Article and Find Full Text PDF

The coordinated regulation of protein kinases is a rapid mechanism that integrates diverse cues and swiftly determines appropriate cellular responses. However, our understanding of cellular decision-making has been limited by the small number of simultaneously monitored phospho-regulatory events. Here, we have estimated changes in activity in 215 human kinases in 399 conditions derived from a large compilation of phosphopeptide quantifications.

View Article and Find Full Text PDF

Systematic approaches to studying cellular signaling require phosphoproteomic techniques that reproducibly measure the same phosphopeptides across multiple replicates, conditions, and time points. Here we present a method to mine information from large-scale, heterogeneous phosphoproteomics data sets to rapidly generate robust targeted mass spectrometry (MS) assays. We demonstrate the performance of our method by interrogating the IGF-1/AKT signaling pathway, showing that even rarely observed phosphorylation events can be consistently detected and precisely quantified.

View Article and Find Full Text PDF

Triple-negative breast cancer is a heterogeneous disease characterized by poor clinical outcomes and a shortage of targeted treatment options. To discover molecular features of triple-negative breast cancer, we performed quantitative proteomics analysis of twenty human-derived breast cell lines and four primary breast tumors to a depth of more than 12,000 distinct proteins. We used this data to identify breast cancer subtypes at the protein level and demonstrate the precise quantification of biomarkers, signaling proteins, and biological pathways by mass spectrometry.

View Article and Find Full Text PDF

Lipid deposition in the liver is associated with metabolic disorders including fatty liver disease, type II diabetes, and hepatocellular cancer. The enzymes acetyl-CoA carboxylase 1 (ACC1) and ACC2 are powerful regulators of hepatic fat storage; therefore, their inhibition is expected to prevent the development of fatty liver. In this study we generated liver-specific ACC1 and ACC2 double knockout (LDKO) mice to determine how the loss of ACC activity affects liver fat metabolism and whole-body physiology.

View Article and Find Full Text PDF

Lipin 2 is a phosphatidic acid phosphatase (PAP) responsible for the penultimate step of triglyceride synthesis and dephosphorylation of phosphatidic acid (PA) to generate diacylglycerol. The lipin family of PA phosphatases is composed of lipins 1-3, which are members of the conserved haloacid dehalogenase superfamily. Although genetic alteration of LPIN2 in humans is known to cause Majeed syndrome, little is known about the biochemical regulation of its PAP activity.

View Article and Find Full Text PDF

The field of cellular signaling is fueled by the discovery of novel protein phosphorylation events. Phosphoproteomics focuses on the large-scale identification and characterization of serine, threonine, and tyrosine phosphorylation of proteins. Phosphopeptide enrichment followed by mass spectrometry has emerged as the most powerful technique for unbiased, discovery-driven analysis by offering high sensitivity, resolution, and speed.

View Article and Find Full Text PDF

Objective: To identify obesity-related cancer genes in endometrial and adipose tissue depots of body mass index-matched morbidly obese women with and without endometrial cancer.

Methods: Eight women undergoing hysterectomy (4 women with and 4 women without endometrial cancer) were matched by age (52.6 years) and body mass index (44.

View Article and Find Full Text PDF

The adipocyte is a key regulator of mammalian metabolism. To advance our understanding of this important cell, we have used quantitative proteomics to define the protein composition of the adipocyte plasma membrane (PM) in the presence and absence of insulin. Using this approach, we have identified a high confidence list of 486 PM proteins, 52 of which potentially represent novel cell surface proteins, including a member of the adiponectin receptor family and an unusually high number of hydrolases with no known function.

View Article and Find Full Text PDF