Eco-evolutionary responses to environmentally induced selection fundamentally depend on magnitudes of genetic variation underlying traits that facilitate population persistence. Additive genetic variances and associated heritabilities can vary across environmental conditions, especially for labile phenotypic traits expressed through early life. However, short-term seasonal dynamics of genetic variances are rarely quantified in wild populations, precluding inference on eco-evolutionary outcomes in seasonally dynamic systems.
View Article and Find Full Text PDFPopulation dynamic and eco-evolutionary responses to environmental variation and change fundamentally depend on combinations of within- and among-cohort variation in the phenotypic expression of key life-history traits, and on corresponding variation in selection on those traits. Specifically, in partially migratory populations, spatio-seasonal dynamics depend on the degree of adaptive phenotypic expression of seasonal migration versus residence, where more individuals migrate when selection favours migration. Opportunity for adaptive (or, conversely, maladaptive) expression could be particularly substantial in early life, through the initial development of migration versus residence.
View Article and Find Full Text PDFDissecting joint micro-evolutionary and plastic responses to environmental perturbations requires quantifying interacting components of genetic and environmental variation underlying expression of key traits. This ambition is particularly challenging for phenotypically discrete traits where multiscale decompositions are required to reveal nonlinear transformations of underlying genetic and environmental variation into phenotypic variation, and when effects must be estimated from incomplete field observations. We devised a joint multistate capture-recapture and quantitative genetic animal model, and fitted this model to full-annual-cycle resighting data from partially-migratory European shags (${Gulosus~{}aristotelis}$) to estimate key components of genetic, environmental and phenotypic variance in the ecologically critical discrete trait of seasonal migration versus residence.
View Article and Find Full Text PDFAbstractPopulation responses to environmental variation ultimately depend on within-individual and among-individual variation in labile phenotypic traits that affect fitness and resulting episodes of selection. Yet complex patterns of individual phenotypic variation arising within and between time periods, as well as associated variation in selection, have not been fully conceptualized or quantified. We highlight how structured patterns of phenotypic variation in dichotomous threshold traits can theoretically arise and experience varying forms of selection, shaping overall phenotypic dynamics.
View Article and Find Full Text PDFQuantifying temporal variation in sex-specific selection on key ecologically relevant traits, and quantifying how such variation arises through synergistic or opposing components of survival and reproductive selection, is central to understanding eco-evolutionary dynamics, but rarely achieved. Seasonal migration versus residence is one key trait that directly shapes spatio-seasonal population dynamics in spatially and temporally varying environments, but temporal dynamics of sex-specific selection have not been fully quantified. We fitted multi-event capture-recapture models to year-round ring resightings and breeding success data from partially migratory European shags () to quantify temporal variation in annual sex-specific selection on seasonal migration versus residence arising through adult survival, reproduction and the combination of both (i.
View Article and Find Full Text PDFElucidating the full eco-evolutionary consequences of climate change requires quantifying the impact of extreme climatic events (ECEs) on selective landscapes of key phenotypic traits that mediate responses to changing environments. Episodes of strong ECE-induced selection could directly alter population composition, and potentially drive micro-evolution. However, to date, few studies have quantified ECE-induced selection on key traits, meaning that immediate and longer-term eco-evolutionary implications cannot yet be considered.
View Article and Find Full Text PDF