Publications by authors named "Robert Steward"

Extracellular matrix (ECM) composition is important in a host of pathophysiological processes such as angiogenesis, atherosclerosis, and diabetes, and during each of these processes ECM composition has been reported to change over time. However, the impact ECM composition has on the ability of endothelium to respond mechanically is currently unknown. Therefore, in this study, we seeded human umbilical vein endothelial cells (HUVECs) onto soft hydrogels coated with an ECM concentration of 0.

View Article and Find Full Text PDF

The human brain microvasculature is constantly exposed to variable fluid flow regimes and their influence on the endothelium depends in part on the synchronous cooperative behavior between cell-cell junctions and the cytoskeleton. In this study, we exposed human cerebral microvascular endothelial cells to a low laminar flow (1 dyne⋅cm ), high laminar flow (10 dyne⋅cm ), low oscillatory flow (±1 dyne⋅cm ), or high oscillatory flow (±10 dyne⋅cm ) for 24 hr. After this time, endothelial cell-cell junction and cytoskeletal structural response was characterized through observation of zonula occludens-1 (ZO-1), claudin-5, junctional adhesion molecule-A (JAM-A), vascular endothelial cadherin (VE-Cad), and F-actin.

View Article and Find Full Text PDF

Astrocytes are essential to brain homeostasis and their dysfunction can have devastating consequences on human quality of life. Such deleterious effects are generally due in part to changes that occur at the cellular level, which may be biochemical or biomechanical in nature. One biomechanical change that can occur is a change in tissue stiffness.

View Article and Find Full Text PDF

Breast cancer (BCa) is one of the most common cancers for women and metastatic BCa causes the majority of deaths. The extracellular matrix (ECM) stiffens during cancer progression and provides biophysical signals to modulate proliferation, morphology, and metastasis. Cells utilize mechanotransduction and integrins to sense and respond to ECM stiffness.

View Article and Find Full Text PDF

Lab-on-a-chip technologies have allowed researchers to acquire a flexible, yet relatively inexpensive testbed to study one of the leading causes of death worldwide, cardiovascular disease. Cardiovascular diseases, such as peripheral artery disease, arteriosclerosis, and aortic stenosis, for example, have all been studied by lab-on-a-chip technologies. These technologies allow for the integration of mammalian cells into functional structures that mimic vital organs with geometries comparable to those found in vivo.

View Article and Find Full Text PDF

Microfluidic technologies are frequently employed as point-of-care diagnostic tools for improving time-to-diagnosis and improving patient outcomes in clinical settings. These microfluidic devices often are designed to operate with peripheral equipment for liquid handling that increases the cost and complexity of these systems and reduces their potential for widespread adoption in low resource healthcare applications. Here, we present a low-cost (~$120), open-source peristaltic pump constructed with a combination of three dimensional (3D)-printed parts and common hardware, which is amenable to deployment with microfluidic devices for point-of-care diagnostics.

View Article and Find Full Text PDF

Endothelial cells have been established to generate intercellular stresses and tractions, but the role gap junctions play in endothelial intercellular stress and traction generation is currently unknown. Therefore, we present here a mechanics-based protocol to probe the influence of gap junction connexin 43 (Cx43) has on endothelial biomechanics by exposing confluent endothelial monolayers to a known Cx43 inhibitor 2,5-dihydroxychalcone (chalcone) and measuring the impact this inhibitor has on tractions and intercellular stresses. We present representative results, which show a decrease in both tractions and intercellular stresses under a high chalcone dosage (2 µg/mL) when compared to control.

View Article and Find Full Text PDF

Blood vessels may be found throughout the entire body and their importance to human life is undeniable. This is evident in the fact that a malfunctioning blood vessel can result in mild symptoms such as shortness of breath or chest pain to more severe symptoms such as a heart attack or stroke, to even death in the severest of cases. Furthermore, there are a host of pathologies that have been linked to the human vasculature.

View Article and Find Full Text PDF

Mechanobiology involves the investigation of mechanical forces and their effect on the development, physiology, and pathology of biological systems. The human body has garnered much attention from many groups in the field, as mechanical forces have been shown to influence almost all aspects of human life ranging from breathing to cancer metastasis. Beyond being influential in human systems, mechanical forces have also been shown to impact nonhuman systems such as algae and zebrafish.

View Article and Find Full Text PDF

From coffee beans flowing in a chute to cells remodelling in a living tissue, a wide variety of close-packed collective systems-both inert and living-have the potential to jam. The collective can sometimes flow like a fluid or jam and rigidify like a solid. The unjammed-to-jammed transition remains poorly understood, however, and structural properties characterizing these phases remain unknown.

View Article and Find Full Text PDF

Endothelial cell alignment along the direction of laminar fluid flow is widely understood to be a defining morphological feature of vascular homeostasis. While the role of associated signaling and structural events have been well studied, associated intercellular stresses under laminar fluid shear have remained ill-defined and the role of these stresses in the alignment process has remained obscure. To fill this gap, we report here the tractions as well as the complete in-plane intercellular stress fields measured within the human umbilical vein endothelial cell (HUVEC) monolayer subjected to a steady laminar fluid shear of 1 Pa.

View Article and Find Full Text PDF

The multi-signal mechanical environment mammalian cells experience is often unaccounted for in current mechanical stimulation studies. To address this we developed a novel technique to induce dual integrated force inputs, uniaxial stretch and fluid shear stress and present here for the first time a vector logic-gate framework to characterize cellular response as a function of cytoskeletal reorganization. Using this framework we found that under fluid shear stress and uniaxial stretch NIH 3T3 fibroblasts responded by the Stretch OR Shear vector logic-gate and HUVECs responded by the NOT Stretch OR Shear vector logic-gate.

View Article and Find Full Text PDF

Cells reside in mechanically rich and dynamic microenvironments, and the complex interplay between mechanics and biology is widely acknowledged. Recent research has yielded insights linking the mechanobiology of cells, human physiology, and pathophysiology. In particular, we have learned of the cell's astounding ability to sense and respond to its mechanical microenvironment.

View Article and Find Full Text PDF

It was our objective to study the role of mechanical stimulation on fibronectin (FN) reorganization and recruitment by exposing fibroblasts to shear fluid flow and equibiaxial stretch. Mechanical stimulation was also combined with a Rho inhibitor to probe their coupled effects on FN. Mechanically stimulated cells revealed a localization of FN around the cell periphery as well as an increase in FN fibril formation.

View Article and Find Full Text PDF

Cells are complex, dynamic systems that actively adapt to various stimuli including mechanical alterations. Central to understanding cellular response to mechanical stimulation is the organization of the cytoskeleton and its actin filament network. In this manuscript, we present a minimalistic network Monte Carlo based approach to model actin filament organization under cyclic stretching.

View Article and Find Full Text PDF

Mechanotransduction of sensory neurons is of great interest to the scientific community, especially in areas such as pain, neurobiology, cardiovascular homeostasis and mechanobiology. We describe a method to investigate stretch-activated mechanotransduction in sensory nerves through subcellular stimulation. The method imposes localized mechanical stimulation through indentation of an elastomeric substrate and combines this mechanical stimulation with whole-cell patch clamp recording of the electrical response to single-nerve stretching.

View Article and Find Full Text PDF

The ability of cells to respond to external mechanical stimulation is a complex and robust process involving a diversity of molecular interactions. Although mechanotransduction has been heavily studied, many questions remain regarding the link between physical stimulation and biochemical response. Of significant interest has been the contribution of the transmembrane proteins involved, and integrins in particular, because of their connectivity to both the extracellular matrix and the cytoskeleton.

View Article and Find Full Text PDF

Cells are complex, dynamic systems that respond to various in vivo stimuli including chemical, mechanical, and scaffolding alterations. The influence of mechanics on cells is especially important in physiological areas that dictate what modes of mechanics exist. Complex, multivariate physiological responses can result from multi-factorial, multi-mode mechanics, including tension, compression, or shear stresses.

View Article and Find Full Text PDF

Recent results demonstrate the exquisite sensitivity of cell morphology and structure to mechanical stimulation. Mechanical stimulation is often coupled with cell-substrate interactions that can, in turn, influence molecular response and determine cellular fates including apoptosis, proliferation, and differentiation. To understand these effects as they specifically relate to compressive mechanical stimulation and topographic control, we developed a microfabricated system to grow cells on polydimethylsiloxane (PDMS) microchannel surfaces where we maintained compression stimulation.

View Article and Find Full Text PDF

Transthyretin (TTR)-containing amyloid fibrils are deposited in cardiac tissue as a natural consequence of aging. A large number of inherited mutations lead to amyloid diseases by accelerating TTR deposition in other organs. Amyloid formation is preceded by a disruption of the quaternary structure of TTR and conformational changes in the monomer.

View Article and Find Full Text PDF

We applied two numerical methods to in situ hyperspectral measurements of remote sensing reflectance Rrs to assess the feasibility of remote detection and monitoring of the toxic dinoflagellate, Karenia brevis, which has been shown to exhibit unique absorption properties. First, an existing quasi-analytical algorithm was used to invert remote sensing reflectance spectra, Rrs(lambda), to derive phytoplankton absorption spectra, a(phi)Rrs(lambda). Second, the fourth derivatives of the a(phi)Rrs(lambda) spectra were compared to the fourth derivative of a reference K.

View Article and Find Full Text PDF

The calibration of multispectral and hyperspectral imaging systems is typically done in the laboratory using an integrating sphere, which usually produces a signal that is red rich. Using such a source to calibrate environmental monitoring systems presents some difficulties. Not only is much of the calibration data outside the range and spectral quality of data values that are expected to be captured in the field, using these measurements alone may exaggerate the optical flaws found within the system.

View Article and Find Full Text PDF