Publications by authors named "Robert Steffan"

Real-time quantitative PCR (qPCR) protocols specific to the reductive dehalogenase (RDase) genes vcrA, bvcA, and tceA are commonly used to quantify Dehalococcoides spp. in groundwater from chlorinated solvent-contaminated sites. In this study, loop-mediated isothermal amplification (LAMP) was developed as an alternative approach for the quantification of these genes.

View Article and Find Full Text PDF

The I100V isoform of toluene-4-monooxygenase was used to catalyze the oxidative polymerization of anthranil and various indoles under mildly acidic conditions, favoring the production of trimers. Compounds produced in sufficient yield were purified and tested for their ability to inhibit the growth of B. anthracis, E.

View Article and Find Full Text PDF

Nucleic acid amplification of biomarkers is increasingly used to measure microbial activity and predict remedial performance in sites with trichloroethene (TCE) contamination. Field-based genetic quantification of microorganisms associated with bioremediation may help increase accuracy that is diminished through transport and processing of groundwater samples. Sterivex cartridges and a previously undescribed mechanism for eluting biomass was used to concentrate cells.

View Article and Find Full Text PDF

Chlorinated solvents including tetrachloroethene (perchloroethene and trichloroethene), are widely used industrial solvents. Improper use and disposal of these chemicals has led to a widespread contamination. Anaerobic treatment technologies that utilize Dehalococcoides spp.

View Article and Find Full Text PDF

Two bacterial hosts expressing cloned aromatic oxygenases were used to catalyze the oxidation and polymerization of indole and related substrates, creating mixtures of indigoid compounds comprised of novel dimers and trimers. Crude extracts and purified compounds were tested for their ability to inhibit the growth of Gram-positive organisms, in general, and Mycobacterium tuberculosis (TB), in particular. Of the 74 compounds tested against M.

View Article and Find Full Text PDF

1,4-Dioxane is an important groundwater contaminant. Pseudonocardia sp. strain ENV478 degrades 1,4-dioxane via cometabolism after the growth on tetrahydrofuran (THF) and other carbon sources.

View Article and Find Full Text PDF

Biologically produced iso-butanol is currently being considered as an additive in gasoline blends. To evaluate its potential environmental fate in groundwater aquifers, a laboratory microcosm study was performed to evaluate iso-butanol biodegradation under various anaerobic conditions (nitrate-reducing, sulfate-reducing and methanogenic). The impacts of iso-butanol on benzene, toluene, ethylbenzene, and total xylenes (BTEX) biodegradation were also assessed, and microcosms prepared using ethanol instead of iso-butanol were evaluated to provide a basis for comparison.

View Article and Find Full Text PDF

The aerobic biodegradability of iso-butanol, a new biofuel, and its impact on benzene, toluene, ethylbenzene and xylenes (BTEX) degradation was investigated in aerobic microcosms consisting of groundwater and sediment from a California site with a history of gasoline contamination. To the best of our knowledge this is the first study directly examining the effects of iso-butanol on BTEX degradation. Microcosms that received either low (68 μM) or high (3400 μM) concentrations of iso-butanol showed complete biodegradation of iso-butanol within 7 and 23 d, respectively, of incubation at 15°C under aerobic conditions.

View Article and Find Full Text PDF

Laboratory experiments were performed in discretely fractured sandstone blocks to evaluate the use of bioaugmentation to treat residual dense non-aqueous phase liquid (DNAPL) tetrachloroethene (PCE). Significant dechlorination of PCE and growth of Dehalococcoides spp. (DHC) occurred within the fractures.

View Article and Find Full Text PDF

Replacement of a quinoline with an imidazo[1,2-a]pyridine in a series of liver X receptor (LXR) agonists incorporating a [3-(sulfonyl)aryloxyphenyl] side chain provided high affinity LXR ligands 7. In functional assays of LXR activity, good agonist potency and efficacy were found for several analogs.

View Article and Find Full Text PDF

An evaluation of peat moss plus crude soybean oil (PMSO) for mitigation of explosive contamination of soil at military facilities was performed using large soil lysimeters under field conditions. Actual range soils were used, and two PMSO preparations with different ratios of peat moss:soybean oil (1:1, PO1; 1:2, PO2) were compared to a control lysimeter that received no PMSO. PMSO was applied as a 10 cm layer on top of the soil, and Composition B detonation residues from a 55-mm mortar round were applied at the surface of each of the lysimeters.

View Article and Find Full Text PDF

Chlorinated solvents such as perchloroethylene (PCE) and trichloroethylene (TCE) continue to be significant groundwater contaminants throughout the USA. In many cases efficient bioremediation of aquifers contaminated with these chemicals requires the addition of exogenous microorganisms, specifically members of the genus Dehalococcoides (DHC). This process is referred to as bioaugmentation.

View Article and Find Full Text PDF

The transformation of explosives, including hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), by xenobiotic reductases XenA and XenB (and the bacterial strains harboring these enzymes) under both aerobic and anaerobic conditions was assessed. Under anaerobic conditions, Pseudomonas fluorescens I-C (XenB) degraded RDX faster than Pseudomonas putida II-B (XenA), and transformation occurred when the cells were supplied with sources of both carbon (succinate) and nitrogen (NH4+), but not when only carbon was supplied. Transformation was always faster under anaerobic conditions compared to aerobic conditions, with both enzymes exhibiting a O2 concentration-dependent inhibition of RDX transformation.

View Article and Find Full Text PDF

Liver X receptors (LXRs) are ligand-activated transcription factors that coordinate regulation of gene expression involved in several cellular functions but most notably cholesterol homeostasis encompassing cholesterol transport, catabolism, and absorption. WAY-252623 (LXR-623) is a highly selective and orally bioavailable synthetic modulator of LXR, which demonstrated efficacy for reducing lesion progression in the murine LDLR(-/-) atherosclerosis model with no associated increase in hepatic lipogenesis either in this model or Syrian hamsters. In nonhuman primates with normal lipid levels, WAY-252623 significantly reduced total (50-55%) and LDL-cholesterol (LDLc) (70-77%) in a time- and dose-dependent manner as well as increased expression of the target genes ABCA1/G1 in peripheral blood cells.

View Article and Find Full Text PDF

Batch and column experiments were performed to evaluate the transport, growth and dechlorination activity of Dehalococcoides sp. (DHC) during bioaugmentation for chlorinated ethenes. Batch experiments showed that the reductive dechlorination of trichloroethene (TCE), cis-1,2-dichloroethene (DCE), and vinyl chloride (VC), as well as growth of the DHC, were well described by the Monod kinetic model.

View Article and Find Full Text PDF

A series of substituted 2-benzyl-3-aryl-7-trifluoromethylindazoles were prepared as LXR modulators. These compounds were partial agonists in transactivation assays when compared to 1 (T0901317) and were slightly weaker with respect to potency and efficacy on LXRalpha than on LXRbeta. Lead compounds in this series 12 (WAY-252623) and 13 (WAY-214950) showed less lipid accumulation in HepG2 cells than potent full agonists 1 and 3 (WAY-254011) but were comparable in efficacy to 1 and 3 with respect to cholesterol efflux in THP-1 foam cells, albeit weaker in potency.

View Article and Find Full Text PDF

Degradation of bis(2-chloroethyl) ether (BCEE) was observed to occur in two bacterial strains. Strain ENV481, a Xanthobacter sp. strain, was isolated by enrichment culturing of samples from a Superfund site located in the northeastern United States.

View Article and Find Full Text PDF

A bacterium designated Pseudonocardia sp. strain ENV478 was isolated by enrichment culturing on tetrahydrofuran (THF) and was screened to determine its ability to degrade a range of ether pollutants. After growth on THF, strain ENV478 degraded THF (63 mg/h/g total suspended solids [TSS]), 1,4-dioxane (21 mg/h/g TSS), 1,3-dioxolane (19 mg/h/g TSS), bis-2-chloroethylether (BCEE) (12 mg/h/g TSS), and methyl tert-butyl ether (MTBE) (9.

View Article and Find Full Text PDF

The discovery of novel intervention points in the inflammatory pathway has been a focus of drug development in recent years. We have identified pathway selective ligands for the estrogen receptor (ER) that inhibit NF-kappaB mediated inflammatory gene expression causing a reduction of cytokines, chemokines, adhesion molecules and inflammatory enzymes. SAR development of a series of 4-(Indazol-3-yl)-phenols has led to the identification of WAY-169916 an orally active non-steroidal ligand with the potential use in the treatment of inflammatory diseases without the classical proliferative effects associated with non-selective estrogens.

View Article and Find Full Text PDF

The anti-inflammatory activity of non-selective estrogens has been attributed to their ability to antagonize the activity of nuclear factor kappaB (NF-kappaB), a known mediator of inflammatory responses. Here we report the identification of a potent new class of pathway-selective ER ligands that selectively antagonize NF-kappaB functional activity, while exhibiting a lack of classical estrogenic effect.

View Article and Find Full Text PDF

Estrogen receptors (ER) are widely expressed in multiple genital and nongenital tissues. Upon engagement of these receptors, multiple genes are affected in target tissues via estrogen response elements. Nonsteroidal pathway-selective ER ligands have recently been identified that inhibit NF-kappaB transcriptional activity and are devoid of conventional estrogenic activities on genital tissues.

View Article and Find Full Text PDF

Our efforts in seeking low molecular weight agonists of the antidiuretic peptide hormone arginine vasopressin (AVP) have led to the identification of the clinical candidate WAY-151932 (VNA-932). Further exploration of the structural requirements for agonist activity has provided another class of potent, orally active, non-peptidic vasopressin V2 receptor selective agonists exemplified by the 5,11-dihydro-pyrido[2,3-b][1,5]benzodiazepine as a candidate for further development.

View Article and Find Full Text PDF

Broad-substrate-range monooygenase enzymes, including toluene-4-monooxygenase (T4MO), can catalyze the oxidation of indole. The indole oxidation products can then condense to form the industrially important dye indigo. Site-directed mutagenesis of T4MO resulted in the creation of T4MO isoforms with altered pigment production phenotypes.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a chronic inflammatory disease that produces synovial proliferation and joint erosions. The pathologic lesions of RA are driven through the production of inflammatory mediators in the synovium mediated, in part, by the transcription factor NF-kappaB. We have identified a non-steroidal estrogen receptor ligand, WAY-169916, that selectively inhibits NF-kappaB transcriptional activity but is devoid of conventional estrogenic activity.

View Article and Find Full Text PDF