Virus-like particles (VLPs) are an established vaccine platform and can be strong immunogens capable of eliciting both humoral and cellular immune responses against a range of pathogens. Here, we show by cryo-electron microscopy that VLPs of Mayaro virus, which contain envelope glycoproteins E1-E2 and capsid, exhibit an architecture that closely resembles native virus. In contrast to monomeric and soluble envelope 2 (E2) glycoprotein, both VLPs as well as the adenovirus and modified vaccinia virus Ankara (MVA) vaccine platforms expressing the equivalent envelope glycoproteins E1-E2, and capsid induced highly neutralising antibodies after immunisation.
View Article and Find Full Text PDFNipah virus (NiV) is a highly pathogenic paramyxovirus capable of causing severe respiratory and neurologic disease in humans. Currently, there are no licensed vaccines or therapeutics against NiV, underscoring the urgent need for the development of countermeasures. The NiV surface-displayed glycoproteins, NiV-G and NiV-F, mediate host cell attachment and fusion, respectively, and are heavily targeted by host antibodies.
View Article and Find Full Text PDFThe zoonotic Rift Valley fever virus (RVFV) can cause severe disease in humans and has pandemic potential, yet no approved vaccine or therapy exists. Here we describe a dual-mechanism human monoclonal antibody (mAb) combination against RVFV that is effective at minimal doses in a lethal mouse model of infection. We structurally analyze and characterize the binding mode of a prototypical potent Gn domain-A-binding antibody that blocks attachment and of an antibody that inhibits infection by abrogating the fusion process as previously determined.
View Article and Find Full Text PDFRodent-borne hantaviruses are prevalent worldwide and upon spillover to human populations, cause severe disease for which no specific treatment is available. A potent antibody response is key for recovery from hantavirus infection. Here we study a highly neutralizing human monoclonal antibody, termed SNV-42, which was derived from a memory B cell isolated from an individual with previous Sin Nombre virus (SNV) infection.
View Article and Find Full Text PDFHantaviruses are a group of emerging pathogens capable of causing severe disease upon zoonotic transmission to humans. The mature hantavirus surface presents higher-order tetrameric assemblies of two glycoproteins, Gn and Gc, which are responsible for negotiating host cell entry and constitute key therapeutic targets. Here, we demonstrate that recombinantly derived Gn from Hantaan virus (HTNV) elicits a neutralizing antibody response (serum dilution that inhibits 50% infection [ID], 1:200 to 1:850) in an animal model.
View Article and Find Full Text PDFThe intricate lattice of Gn and Gc glycoprotein spike complexes on the hantavirus envelope facilitates host-cell entry and is the primary target of the neutralizing antibody-mediated immune response. Through study of a neutralizing monoclonal antibody termed mAb P-4G2, which neutralizes the zoonotic pathogen Puumala virus (PUUV), we provide a molecular-level basis for antibody-mediated targeting of the hantaviral glycoprotein lattice. Crystallographic analysis demonstrates that P-4G2 binds to a multi-domain site on PUUV Gc and may preclude fusogenic rearrangements of the glycoprotein that are required for host-cell entry.
View Article and Find Full Text PDFHantaviruses are rodent-borne viruses causing serious zoonotic outbreaks worldwide for which no treatment is available. Hantavirus particles are pleomorphic and display a characteristic square surface lattice. The envelope glycoproteins Gn and Gc form heterodimers that further assemble into tetrameric spikes, the lattice building blocks.
View Article and Find Full Text PDFEnveloped viruses enclose their genomes inside a lipid bilayer which is decorated by membrane proteins that mediate virus entry. These viruses display a wide range of sizes, morphologies and symmetries. Spherical viruses are often isometric and their envelope proteins follow icosahedral symmetry.
View Article and Find Full Text PDFCurr Opin Struct Biol
October 2018
Cryogenic transmission electron microscopy (cryo-EM) is widely used to determine high-resolution structures of symmetric virus capsids. The method holds promise for extending studies beyond purified capsids and their symmetric protein shells. The non-symmetric genome component has been addressed in dsRNA cypoviruses and ssRNA bacteriophages Qβ and MS2.
View Article and Find Full Text PDFHantaviruses are zoonotic pathogens that cause severe hemorrhagic fever and pulmonary syndrome. The outer membrane of the hantavirus envelope displays a lattice of two glycoproteins, Gn and Gc, which orchestrate host cell recognition and entry. Here, we describe the crystal structure of the Gn glycoprotein ectodomain from the Asiatic Hantaan virus (HTNV), the most prevalent pathogenic hantavirus.
View Article and Find Full Text PDFRecombinant tau protein is widely used to study the biochemical, cellular and pathological aspects of tauopathies, including Alzheimer's disease and frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTPD-17). Pure tau in high yield is a requirement for in vitro evaluation of the protein's physiological and toxic functions. However, the preparation of recombinant tau is complicated by the protein's propensity to aggregate and form truncation products, necessitating the use of multiple, time-consuming purification methods.
View Article and Find Full Text PDF