Publications by authors named "Robert Stamps"

Theory and simulations are used to demonstrate implementation of a variational Bayes algorithm called "active inference" in interacting arrays of nanomagnetic elements. The algorithm requires stochastic elements, and a simplified model based on a magnetic artificial spin ice geometry is used to illustrate how nanomagnets can generate the required random dynamics. Examples of tracking and PID control are demonstrated and shown to be consistent with the original stochastic differential equation formulation of active inference.

View Article and Find Full Text PDF

Interest in continuous psychophysical approaches as a means of collecting data quickly under natural conditions is growing. Such approaches require stimuli to be changed randomly on a continuous basis so that participants can not guess future stimulus states. Participants are generally tasked with responding continuously using a continuum of response options.

View Article and Find Full Text PDF

Determining the velocities of target objects as we navigate complex environments is made more difficult by the fact that our own motion adds systematic motion signals to the visual scene. The flow-parsing hypothesis asserts that the background motion is subtracted from visual scenes in such cases as a way for the visual system to determine target motions relative to the scene. Here, we address the question of why backgrounds are only subtracted in lab settings.

View Article and Find Full Text PDF

We demonstrate ground state tunability for a hybrid artificial spin ice composed of Fe nanomagnets which are subject to site-specific exchange-bias fields, applied in integer multiples of the lattice along one sublattice of the classic square artificial spin ice. By varying this period, three distinct magnetic textures are identified: a striped ferromagnetic phase; an antiferromagnetic phase attainable through an external field protocol alone; and an unconventional ground state with magnetically charged pairs embedded in an antiferromagnetic matrix. Monte Carlo simulations support the results of field protocols and demonstrate that the pinning tunes relaxation timescales and their critical behavior.

View Article and Find Full Text PDF

Artificial Spin Ice (ASI), consisting of a two dimensional array of nanoscale magnetic elements, provides a fascinating opportunity to observe the physics of out-of-equilibrium systems. Initial studies concentrated on the static, frozen state, whilst more recent studies have accessed the out-of-equilibrium dynamic, fluctuating state. This opens up exciting possibilities such as the observation of systems exploring their energy landscape through monopole quasiparticle creation, potentially leading to ASI magnetricity, and to directly observe unconventional phase transitions.

View Article and Find Full Text PDF

Artificial spin ices are a class of metamaterials consisting of magnetostatically coupled nanomagnets. Their interactions give rise to emergent behavior, which has the potential to be harnessed for the creation of functional materials. Consequently, the ability to map the stray field of such systems can be decisive for gaining an understanding of their properties.

View Article and Find Full Text PDF

For over ten years, arrays of interacting single-domain nanomagnets, referred to as artificial spin ices, have been engineered with the aim to study frustration in model spin systems. Here, we use Fresnel imaging to study the reversal process in "pinwheel" artificial spin ice, a modified square ASI structure obtained by rotating each island by some angle about its midpoint. Our results demonstrate that a simple 45° rotation changes the magnetic ordering from antiferromagnetic to ferromagnetic, creating a superferromagnet which exhibits mesoscopic domain growth mediated by domain wall nucleation and coherent domain propagation.

View Article and Find Full Text PDF

As first demonstrated by Tang and Cohen in chiral optics, the asymmetry in the rate of electromagnetic energy absorption between left and right enantiomers is determined by an optical chirality density. Here, we demonstrate that this effect can exist in magnetic spin systems. By constructing a formal analogy with electrodynamics, we show that in antiferromagnets with broken chiral symmetry, the asymmetry in local spin-wave energy absorption is proportional to a spin-wave chirality density, which is a direct counterpart of optical zilch.

View Article and Find Full Text PDF

is considered as the primary agent responsible for soil suppressiveness to root-knot nematodes widely distributed in many agricultural fields. A preliminary survey on a field where the grower had experienced a continuous decline in productivity caused by showed that the nematode was infected with . For effective control of the nematode, the bacterium and the host must coexist in the same root zone.

View Article and Find Full Text PDF

Modern nanofabrication techniques have opened the possibility to create novel functional materials, whose properties transcend those of their constituent elements. In particular, tuning the magnetostatic interactions in geometrically frustrated arrangements of nanoelements called artificial spin ice can lead to specific collective behaviour, including emergent magnetic monopoles, charge screening and transport, as well as magnonic response. Here, we demonstrate a spin-ice-based active material in which energy is converted into unidirectional dynamics.

View Article and Find Full Text PDF

Carbon-based molecules offer unparalleled potential for THz and optical devices controlled by pure spin currents: a low-dissipation flow of electronic spins with no net charge displacement. However, the research so far has been focused on the electrical conversion of the spin imbalance, where molecular materials are used to mimic their crystalline counterparts. Here, we use spin currents to access the molecular dynamics and optical properties of a fullerene layer.

View Article and Find Full Text PDF

Root-knot nematodes are important pests of cut foliage crops in Florida. Currently, effective nematicides for control of these nematodes on cut foliage crops are lacking. Hence, research was conducted at the University of Florida to identify pesticides or biopesticides that could be used to manage these nematodes.

View Article and Find Full Text PDF

The Dzyaloshinskii-Moriya interaction in ultrathin ferromagnets can result in nonreciprocal propagation of spin waves. We examine theoretically how spin wave power flow is influenced by this interaction. We show that the combination of the dipole-dipole and Dzyaloshinskii-Moriya interactions can result in unidirectional caustic beams in the Damon-Eshbach geometry.

View Article and Find Full Text PDF

Florida accounts for more than 75% of the national cut foliage production. Unfortunately, root-knot nematodes (RKN) ( spp.) are a serious problem on these crops, rendering many farms unproductive.

View Article and Find Full Text PDF

Magnetic skyrmions have the potential to provide solutions for low-power, high-density data storage and processing. One of the major challenges in developing skyrmion-based devices is the skyrmions' magnetic stability in confined helimagnetic nanostructures. Through a systematic study of equilibrium states, using a full three-dimensional micromagnetic model including demagnetisation effects, we demonstrate that skyrmionic textures are the lowest energy states in helimagnetic thin film nanostructures at zero external magnetic field and in absence of magnetocrystalline anisotropy.

View Article and Find Full Text PDF

Spatially resolved analysis of magnetic properties on the nanoscale remains challenging, yet strain and defects on this length-scale can profoundly affect a material's bulk performance. We present a detailed investigation of the magnetic properties of La0.67Sr0.

View Article and Find Full Text PDF

The channeling of spin waves with domain walls in ultrathin ferromagnetic films is demonstrated theoretically and through micromagnetics simulations. It is shown that propagating excitations localized to the wall, which appear in the frequency gap of bulk spin wave modes, can be guided in curved geometries and propagate in close proximity to other channels. For Néel-type walls arising from a Dzyaloshinskii-Moriya interaction, the channeling is strongly nonreciprocal and group velocities can exceed 1  km/s in the long wavelength limit for certain propagation directions.

View Article and Find Full Text PDF

We show that an electron moving in a uniform magnetic field possesses a time-varying "diamagnetic" angular momentum. Surprisingly this means that the kinetic angular momentum of the electron may vary with time, despite the rotational symmetry of the system. This apparent violation of angular momentum conservation is resolved by including the angular momentum of the surrounding fields.

View Article and Find Full Text PDF

In analogy with histo-blood group A antigen, Forssman (Fs) antigen terminates with α3-N-acetylgalactosamine and can be used by pathogens as a host receptor in many mammals. However, primates including humans lack Fs synthase activity and have naturally occurring Fs antibodies in plasma. We investigated individuals with the enigmatic ABO subgroup A(pae) and found them to be homozygous for common O alleles.

View Article and Find Full Text PDF

We present a theoretical discussion of surface polaritons on a ferroelectric-antiferromagnet with magnetoelectric coupling which allows the magnetic subsystem to be canted. Canting of the antiferromagnet results in weak ferromagnetism. The surface polaritons for a semi-infinite film are calculated for a propagation parallel to the uniaxial easy axis, leading to mixed modes.

View Article and Find Full Text PDF

A large-scale hydroponic system to phytoremediate arsenic-contaminated groundwater using Pteris vittata (Chinese brake fern) was successfully tested in a field. In this 30-wk study, three frond-harvesting regimes (all, mature, and senescing fronds) and two water-refilling schemes to compensate for evapotranspiration (high-As water of 140-180 μg/L and low-As water of <7 μg/L) were investigated. Two experiments (Cycle 1 and Cycle 2) were conducted using the same plants in 24 tanks with each containing 600 L of arsenic-contaminated groundwater and 32 ferns.

View Article and Find Full Text PDF