Ultraviolet (UV)-induced DNA mutations produce genetic drivers of cutaneous melanoma initiation and numerous neoantigens that can trigger anti-tumor immune responses in the host. Consequently, melanoma cells must rapidly evolve to evade immune detection by simultaneously modulating cell-autonomous epigenetic mechanisms and tumor-microenvironment interactions. Angiogenesis has been implicated in this process; although an increase of vasculature initiates the immune response in normal tissue, solid tumors manage to somehow enhance blood flow while preventing immune cell infiltration.
View Article and Find Full Text PDFHedgehog (Hh) signaling ligands undergo carboxy terminal sterylation through specialized autoprocessing, called cholesterolysis. Sterylation is brought about intramolecularly in a single turnover by an adjacent enzymatic domain, called HhC, which is found in precursor Hh proteins only. Previous attempts to identify antagonists of the intramolecular activity of HhC have yielded inhibitors that bind HhC irreversibly through covalent mechanisms, as is common for protein autoprocessing inhibitors.
View Article and Find Full Text PDFHedgehog proteins, a family of vital cell signaling factors, are expressed in precursor form, which requires specialized autoprocessing, called cholesterolysis, for full biological activity. Cholesterolysis occurs through the action of the precursor's C-terminal enzymatic domain, HhC. In this work, we describe HhC activator compounds (HACs), a novel class of noncovalent modulators that induce autoprocessing infidelity, diminishing native cholesterolysis in favor of precursor autoproteolysis, an otherwise minor and apparently nonphysiological side reaction.
View Article and Find Full Text PDF