Publications by authors named "Robert Spivey"

We report a highly efficient loading of Yb ions in a surface electrode ion trap by using single pulses from a Q-switched Nd:YAG laser to ablate neutral atoms, combined with a two-photon photo-ionization process. The method is three orders of magnitude faster to load a single ion as compared to traditional resistively heated sources and can load large collections of ions in seconds. The negligible thermal load of this method enables the use of this ablation-based loading scheme in ion traps operating under cryogenic conditions.

View Article and Find Full Text PDF

We have fabricated and characterized laser-ablated micromirrors on fused silica substrates for constructing stable Fabry-Perot optical cavities. We highlight several design features which allow these cavities to have lengths in the 250-300 μm range and be integrated directly with surface ion traps. We present a method to calculate the optical mode shape and losses of these micromirror cavities as functions of cavity length and mirror shape, and confirm that our simulation model is in good agreement with experimental measurements of the intracavity optical mode at a test wavelength of 780 nm.

View Article and Find Full Text PDF

The evolution of thin film morphology during atmospheric pressure deposition has been studied utilizing Monte Carlo methods. Time invariant root-mean-squared roughness and local roughness morphology were both observed when employing a novel simulation parameter, modeling the effect of the experimental high pressure condition. This growth regime, where the surface roughness remains invariant after reaching a critical value, has not been classified by any existing universality class.

View Article and Find Full Text PDF

The matching hypothesis in social psychology claims that people are more likely to form a committed relationship with someone equally attractive. Previous works on stochastic models of human mate choice process indicate that patterns supporting the matching hypothesis could occur even when similarity is not the primary consideration in seeking partners. Yet, most if not all of these works concentrate on fully-connected systems.

View Article and Find Full Text PDF

The knowledge on the influence of surface roughness and the electron-phonon (el-ph) interaction on electrical transport properties of nanoscale metal films is important from both fundamental and technological points of view. Here we report a study of the temperature dependent electron transport properties of nanoscale copper films by measuring temperature dependent electrical resistivity with thickness ranging from 4 to 500 nm. We show that the residual resistivity, which is temperature independent, can be described quantitatively using both measured vertical surface root-mean-square roughness and lateral correlation length in the nanoscale, with no adjustable parameter, by a recent quasi-classical model developed by Chatterjee and Meyerovich (2010 Phys.

View Article and Find Full Text PDF