Objective quantification of tendon structural changes through imaging is only achieved by evaluating tendon structure using ultrasound tissue characterization (UTC) technology. This study compares the effects of bone marrow mesenchymal stromal cells (BM-MSC) and leukocyte-poor platelet-rich plasma (Lp-PRP) on tendon structure and clinical outcomes in male patients with patellar tendinopathy measured with UTC at 3, 6, and 12 months after treatment. This is a double-blinded clinical trial with a randomized active control study with 20 male patients diagnosed with patellar tendinopathy who underwent BM-MSC and Lp-PRP.
View Article and Find Full Text PDFJ Transl Med
May 2024
Background: Autologous bone grafting is the standard treatment for the surgical management of atrophic nonunion of long bones. Other solutions, such as bone marrow mesenchymal stem cells (BM-MSC) combined with phospho-calcium material, have also been used. Here we evaluate the safety and early efficacy of a novel procedure using autologous or allogenic adipose tissue mesenchymal stromal cells (AT-MSC) seeded in a patented tricalcium phosphate-based biomaterial for the treatment of bone regeneration in cases of atrophic nonunion.
View Article and Find Full Text PDFBackground: Patellar tendinopathy is common. The success of traditional management, including isometric or eccentric exercises combined with shockwave therapy and even surgery, is limited. Therefore, it is important to determine whether biological treatments such as ultrasound-guided intratendinous and peritendinous injections of autologous expanded bone marrow mesenchymal stem cells (BM-MSCs) or leukocyte-poor platelet-rich plasma (Lp-PRP) improve clinical outcomes in athletic patients with patellar tendinopathy.
View Article and Find Full Text PDF