Publications by authors named "Robert Snoeberger"

In this work, we found that, during storage or after UV irradiation, ThT is demethylated or oxidized, forming three derivatives. These three derivatives were purified by high performance liquid chromatography and characterized by mass and nuclear magnetic resonance spectroscopy and the spectroscopic properties of pure ThT and the derivatives carefully compared. Our results show that the emission peak at 450 nm results from oxidized ThT and not from the monomeric form of ThT, as previously proposed.

View Article and Find Full Text PDF

Upon electrochemical oxidation of the precursor complexes [Cp*Ir(H(2)O)(3)]SO(4) (1) or [(Cp*Ir)(2)(OH)(3)]OH (2) (Cp* = pentamethylcyclopentadienyl), a blue layer of amorphous iridium oxide containing a carbon admixture (BL) is deposited onto the anode. The solid-state, amorphous iridium oxide material that is formed from the molecular precursors is significantly more active for water-oxidation catalysis than crystalline IrO(2) and functions as a remarkably robust catalyst, capable of catalyzing water oxidation without deactivation or significant corrosion for at least 70 h. Elemental analysis reveals that BL contains carbon that is derived from the Cp* ligand (∼ 3% by mass after prolonged electrolysis).

View Article and Find Full Text PDF

Light-driven water oxidation is an essential step for conversion of sunlight into storable chemical fuels. Fujishima and Honda reported the first example of photoelectrochemical water oxidation in 1972. In their system, TiO was irradiated with ultraviolet light, producing oxygen at the anode and hydrogen at a platinum cathode.

View Article and Find Full Text PDF

Interfacial electron transfer (IET) between a chromophore and a semiconductor nanoparticle is one of the key processes in a dye-sensitized solar cell. Theoretical simulations of the electron transfer in polyoxotitanate nanoclusters Ti(17)O(24)(OPr(i))(20) (Ti(17)) functionalized with four p-nitrophenyl acetylacetone (NPA-H) adsorbates, of which the atomic structure has been fully established by X-ray diffraction measurements, are presented. Complementary experimental information showing IET has been obtained by EPR spectroscopy.

View Article and Find Full Text PDF

Since the discovery of the anticancer activity of titanocene dichloride (TDC), many derivatives have been developed and evaluated. MKT4, a soluble, water-stable formulation of TDC, was used for both Phase I and Phase II human clinical trials. This formulation is investigated here by using (1)H and (13)C NMR, FT-ICR mass spectrometry, and UV/vis-detected pH-dependent speciation.

View Article and Find Full Text PDF

An inverse design methodology suitable to assist the synthesis and optimization of molecular sensitizers for dye-sensitized solar cells is introduced. The method searches for molecular adsorbates with suitable photoabsorption properties through continuous optimization of "alchemical" structures in the vicinity of a reference molecular framework. The approach is illustrated as applied to the design and optimization of linker chromophores for TiO(2) sensitization, using the recently developed phenyl-acetylacetonate (i.

View Article and Find Full Text PDF

We have characterized the covalent binding of the CO(2) reduction electrocatalyst ReC0A (Re(CO)(3)Cl(dcbpy) (dcbpy =4,4'-dicarboxy-2,2'-bipyridine)) to the TiO(2) rutile (001) surface. The analysis based on sum frequency generation (SFG) spectroscopy and density functional theory (DFT) calculations indicates that ReC0A binds to TiO(2) through the carboxylate groups in bidentate or tridentate linkage motifs. The adsorbed complex has the dcbpy moiety nearly perpendicular to the TiO(2) surface and the Re exposed to the solution in a configuration suitable for catalysis.

View Article and Find Full Text PDF

Photoinduced interfacial electron transfer (IET) in sulforhodamine B (SRhB)-aminosilane-Tin oxide (SnO(2)) nanoparticle donor-bridge-acceptor complexes has been studied on a single molecule and ensemble average level. On both SnO(2) and ZrO(2), the sum of single molecule fluorescence decays agree with the ensemble average results, suggesting complete sampling of molecules under single molecule conditions. Shorter fluorescence lifetime on SnO(2) than on ZrO(2) is observed and attributed to IET from SRhB to SnO(2).

View Article and Find Full Text PDF

Several polynuclear transition-metal complexes, including our own dinuclear di-μ-oxo manganese compound [H(2)O(terpy)Mn(III)(μ-O)(2)Mn(IV)(terpy)H(2)O](NO(3))(3) (1, terpy = 2,2':6',2''-terpyridine), have been reported to be homogeneous catalysts for water oxidation. This paper reports the covalent attachment of 1 onto nanoparticulate TiO(2) surfaces using a robust chromophoric linker L. L, a phenylterpy ligand attached to a 3-phenyl-acetylacetonate anchoring moiety via an amide bond, absorbs visible light and leads to photoinduced interfacial electron transfer into the TiO(2) conduction band.

View Article and Find Full Text PDF

Studies of interfacial electron transfer (IET) in TiO(2) surfaces functionalized with (1) pyridine-4-phosphonic acid, (2) [Ru(tpy)(tpy(PO(3)H(2)))](2+), and (3) [Ru(tpy)(bpy)(H(2)O)-Ru(tpy)(tpy(PO(3)H(2)))](4+) (tpy = 2,2':6,2''-terpyridine; bpy = 2,2'-bipyridine) are reported. We characterize the electronic excitations, electron injection time scales, and interfacial electron transfer (IET) mechanisms through phosphonate anchoring groups. These are promising alternatives to the classic carboxylates of conventional dye-sensitized solar cells since they bind more strongly to TiO(2) surfaces and form stable covalent bonds that are unaffected by humidity.

View Article and Find Full Text PDF

A novel class of derivatized acetylacetonate (acac) linkers for robust functionalization of TiO2 nanoparticles (NPs) under aqueous and oxidative conditions is reported. The resulting surface adsorbate anchors are particularly relevant to engineering photocatalytic and photovoltaic devices since they can be applied to attach a broad range of photosensitizers and photocatalytic complexes and are not affected by humidity. Acac is easily modified by CuI-mediated coupling reactions to provide a variety of scaffolds, including substituted terpy complexes (terpy = 2,2':6,2''-terpyridine), assembled with ligands coordinated to transition-metal ions.

View Article and Find Full Text PDF

Pentathienoacene, the thiophene equivalent of pentacene, is one of the latest additions to the family of organic crystal semiconductors with a great potential for use in thin film transistors. By using density functional theory and gas-phase ultraviolet photoelectron spectroscopy, we investigate the microscopic charge transport parameters of the pentathienoacene crystal. We find that the valence band exhibits a stronger dispersion than those in the pentacene and rubrene single crystals with marked uniaxial characteristics within the molecular layer due to the presence of one-dimensional pi-stacks; a small hole effective mass is also found along the direction perpendicular to the molecular layers.

View Article and Find Full Text PDF