Publications by authors named "Robert Siman"

Mild traumatic brain injury (mTBI) causes persisting post-concussion syndrome for many patients without abnormalities on conventional neuroimaging. Currently, there is no method for identifying at-risk cases at an early stage for directing concussion management and treatment. SNTF is a calpain-derived N-terminal proteolytic fragment of spectrin (α-spectrin1-1176) generated in damaged axons following mTBI.

View Article and Find Full Text PDF

Neuroprotection studies are generally unable to demonstrate efficacy in humans. Our specific hypothesis is that multiple pathophysiologic pathways, of variable importance, contribute to ischemic brain damage. As a corollary to this, we discuss the broad hypothesis that a multifaceted approach will improve the probability of efficacious neuroprotection.

View Article and Find Full Text PDF

Diffuse axonal injury (DAI) is a common feature of severe traumatic brain injury (TBI) and may also be a predominant pathology in mild TBI or "concussion". The rapid deformation of white matter at the instant of trauma can lead to mechanical failure and calcium-dependent proteolysis of the axonal cytoskeleton in association with axonal transport interruption. Recently, a proteolytic fragment of alpha-II spectrin, "SNTF", was detected in serum acutely following mild TBI in patients and was prognostic for poor clinical outcome.

View Article and Find Full Text PDF

The perforant pathway projection from layer II of the entorhinal cortex to the hippocampal dentate gyrus is especially important for long-term memory formation, and is preferentially vulnerable to developing a degenerative tauopathy early in Alzheimer's disease (AD) that may spread over time trans-synaptically. Despite the importance of the perforant pathway to the clinical onset and progression of AD, a therapeutic has not been identified yet that protects it from tau-mediated toxicity. Here, we used an adeno-associated viral vector-based mouse model of early-stage AD-type tauopathy to investigate effects of the mTOR inhibitor and autophagy stimulator rapamycin on the tau-driven loss of perforant pathway neurons and synapses.

View Article and Find Full Text PDF

Biomarkers for diffuse axonal injury could have utilities for the acute diagnosis and clinical care of concussion, including those related to sports. The calpain-derived αII-spectrin N-terminal fragment (SNTF) accumulates in axons after traumatic injury and increases in human blood after mild traumatic brain injury (mTBI) in relation to white matter abnormalities and persistent cognitive dysfunction. However, SNTF has never been evaluated as a biomarker for sports-related concussion.

View Article and Find Full Text PDF

Although mild traumatic brain injury (mTBI), or concussion, is not typically associated with abnormalities on computed tomography (CT), it nevertheless causes persistent cognitive dysfunction for many patients. Consequently, new prognostic methods for mTBI are needed to identify at risk cases, especially at an early and potentially treatable stage. Here, we quantified plasma levels of the neurodegeneration biomarker calpain-cleaved αII-spectrin N-terminal fragment (SNTF) from 38 participants with CT-negative mTBI, orthopedic injury (OI), and normal uninjured controls (UCs) (age range 12-30 years), and compared them with findings from diffusion tensor imaging (DTI) and long-term cognitive assessment.

View Article and Find Full Text PDF

The perforant pathway projection from the entorhinal cortex (EC) to the hippocampal dentate gyrus is critically important for long-term memory and develops tau and amyloid pathologies and progressive degeneration starting in the early stages of Alzheimer disease (AD). However, perforant pathway function has not been assessed in experimental models of AD, and a therapeutic agent that protects its structure and function has not yet been identified. Therefore, we developed a new adeno-associated virus-based mouse model for perforant pathway tauopathy.

View Article and Find Full Text PDF

It has been challenging to develop transgenic and gene-targeted mouse models that recapitulate all of the neuropathological features of Alzheimer's disease (AD). For example, in the APP/PS-1 double knock-in mutant mouse (DKI), frank neurodegeneration is not observed at middle age and synapse loss is pronounced only within amyloid plaques. Here, we investigated whether continued amyloid deposition and advanced age of 24-27 months lead to loss of neurons and synapses, tau hyperphosphorylation, and other pathological features of AD.

View Article and Find Full Text PDF

Although enhanced calpain activity is well documented after traumatic brain injury (TBI), the pathways targeting specific substrate proteolysis are less defined. Our past work demonstrated that calpain cleaves voltage gated sodium channel (NaCh) α-subunits in an in vitro TBI model. In this study, we investigated the pathways leading to NaCh cleavage utilizing our previously characterized in vitro TBI model, and determined the location of calpain activation within neuronal regions following stretch injury to micropatterned cultures.

View Article and Find Full Text PDF

Biomarkers for neurodegeneration could be early prognostic measures of brain damage and dysfunction in aneurysmal subarachnoid hemorrhage (aSAH) with clinical and medical applications. Recently, we developed a new panel of neurodegeneration biomarkers, and report here on their relationships with pathophysiological complications and outcomes following severe aSAH. Fourteen patients provided serial cerebrospinal fluid samples for up to 10 days and were evaluated by ultrasonography, angiography, magnetic resonance imaging, and clinical examination.

View Article and Find Full Text PDF

Neuropathological features of Alzheimer's disease (AD) are recapitulated in transgenic mice expressing familial AD-causing mutations, but ectopic transgene overexpression makes it difficult to relate these abnormalities to disease pathogenesis. Alternatively, the APP/PS-1 double knock-in (DKI) mouse produces mutant amyloid precursor protein (APP) and presenilin-1 (PS-1) with normal levels and regulatory controls. Here, we investigated effects of amyloid on brain structure and neuroplasticity by vaccinating DKI mice with amyloid-β starting at 8 months of age.

View Article and Find Full Text PDF

Surrogate markers have enormous potential for contributing to the diagnosis, prognosis, and therapeutic evaluation of acute brain damage, but extensive prior study of individual candidates has not yielded a biomarker in widespread clinical practice. We hypothesize that a panel of neuron-enriched proteins measurable in cerebrospinal fluid (CSF) and blood should vastly improve clinical evaluation and therapeutic management of acute brain injuries. Previously, we developed such a panel based initially on the study of protein release from degenerating cultured neurons, and subsequently on rodent models of traumatic brain injury (TBI) and ischemia, consisting of 14-3-3beta, 14-3-3zeta, three distinct phosphoforms of neurofilament H, ubiquitin hydrolase L1, neuron-specific enolase, alpha-spectrin, and three calpain- and caspase-derived fragments of alpha-spectrin.

View Article and Find Full Text PDF

Alterations in the expression, molecular composition, and localization of voltage-gated sodium channels play major roles in a broad range of neurological disorders. Recent evidence identifies sodium channel proteolysis as a key early event after ischemia and traumatic brain injury, further expanding the role of the sodium channel in neurological diseases. In this study, we investigate the protease responsible for proteolytic cleavage of voltage-gated sodium channels (NaChs).

View Article and Find Full Text PDF

Previously, we identified 14-3-3 beta and zeta isoforms and proteolytic fragments of alpha-spectrin as proteins released from degenerating neurons that also rise markedly in cerebrospinal fluid (CSF) following experimental brain injury or ischemia in rodents, but these proteins have not been studied before as potential biomarkers for ischemic central nervous system injury in humans. Here we describe longitudinal analysis of these proteins along with the neuron-enriched hypophosphorylated neurofilament H (pNFH) and the deubiquitinating enzyme UCH-L1 in lumbar CSF samples from 19 surgical cases of aortic aneurysm repair, 7 involving cardiopulmonary bypass with deep hypothermic circulatory arrest (DHCA). CSF levels of the proteins were near the lower limit of detection by Western blot or enzyme-linked fluorescence immunoassay at the onset of surgical procedures, but increased substantially in a subset of cases, typically within 12-24 h.

View Article and Find Full Text PDF

To examine the time course and relative extent of proteolysis of neurofilament and tubulin proteins after traumatic axonal injury (TAI), anesthetized mice were subjected to optic nerve stretch injury. Immunohistochemistry confirmed neurofilament accumulation within axonal swellings at 4, 24, and 72 h postinjury (n = 4 injured and 2 sham per time point). Immunoblotting of optic nerve homogenates (n = 5 injured and 1 sham at 0.

View Article and Find Full Text PDF

Neurogenesis in the adult hippocampus has been implicated in regulating long-term memory and mood, but its integrity in Alzheimer's disease (AD) is uncertain. Studies of neurogenesis in transgenic mouse models of familial AD are complicated by ectopic overexpression restricted to terminally differentiated neurons, while AD cases have been studied only at the pre-senile or end-stage of disease. To investigate further the fidelity of adult neurogenesis, we examined mice carrying targeted mutations in amyloid precursor protein (APP), presenilin-1 (PS-1), or both APP and PS-1, in which FAD-causing mutations have been inserted into their endogenous genes.

View Article and Find Full Text PDF

Apoptotic or necrotic cell death in the hippocampus is a major factor underlying the cognitive impairments following traumatic brain injury. In this study, we examined if traumatic mechanical injury would produce regional activation of calpain and caspase-3 in the in vitro hippocampus and studied how the mechanically induced activation of NR2A and NR2B containing N-methyl-d-aspartate receptors (NMDARs) affects the activation of these proteases following mechanical injury. Following a 75% stretch, significant levels of activated caspase-3 and calpain-mediated spectrin breakdown products were evident only in cells within the dentate gyrus, and little co-localization of the markers was identified within individual cells.

View Article and Find Full Text PDF

Neural progenitor cells (NPCs) have been shown to be a promising therapy for cell replacement and gene transfer in neurological diseases including traumatic brain injury (TBI). However, NPCs often survive poorly after transplantation despite immunosuppression, and the mechanisms of graft cell death are unknown. In this study, we evaluated caspase- and calpain-mediated mechanisms of cell death of neonatal mouse C17.

View Article and Find Full Text PDF

The E2F1 transcription factor can initiate proliferation or apoptosis, the latter by both transcription-dependent and -independent mechanisms. Recently, an E2F1 mutant lacking the DNA binding domain, E2F1(180-437), has been implicated in degradation of MDMX and MDM2 proteins via lysosomal proteases. MDM proteins block p53 dependent apoptosis by directly inhibiting p53 stability and function.

View Article and Find Full Text PDF

Previously, we identified proteins released from degenerating cultured cortical neurons as novel cerebrospinal fluid (CSF) markers for acute brain injury in the rat. Here, we investigate relationships between CSF changes in these novel markers and the severity of acute ischemic brain injury. Rats underwent sham surgery or 3,6,8, or 10 mins of transient global forebrain ischemia.

View Article and Find Full Text PDF

Prolonged therapeutic hypothermia (32-34 degrees C for 12-24 h) improves the functional outcome of comatose cardiac arrest survivors. It is generally believed that rapidly achieving target temperature optimizes neuroprotection. However, this hypothesis has not been tested systematically.

View Article and Find Full Text PDF

Caspase activation occurs within 1h of reperfusion in discrete cell populations of the adult rat brain following transient forebrain ischemia. Based on the proximity of these cells to regions of adult neurogenesis and the known susceptibility of developing neurons to apoptosis, we tested the hypothesis that rapidly triggered post-ischemic caspase activation occurs in immature neurons or neuroprogenitor cells. Adult male Long Evans rats were injected with BrdU to label mitotic cells 1, 7, or 28 days prior to being studied.

View Article and Find Full Text PDF

Plaques composed of amyloid beta (Abeta) have been found within days following brain trauma in humans, similar to the hallmark plaque pathology of Alzheimer's disease (AD). Here, we evaluated the potential source of this Abeta and long-term mechanisms that could lead to its production. Inertial brain injury was induced in pigs via head rotational acceleration of 110 degrees over 20 ms in the coronal plane.

View Article and Find Full Text PDF

The experimental and clinical study of degenerative brain disorders would benefit from new surrogate markers for brain damage. To identify novel candidate markers for acute brain injury, we report that rat cortical neurons release over 60 cytoskeletal and other proteins, as well as their proteolytic fragments into the medium during neuronal death. The profiles of released proteins differ for necrosis and apoptosis, although a subset of proteins is released generally during neurodegeneration.

View Article and Find Full Text PDF

Ultrastructural disruption of myelin sheaths and a loss of myelin with age are well-documented phenomena in both the human and rhesus monkey. Age-dependent activation of calpain-1 (EC 3.4.

View Article and Find Full Text PDF