Publications by authors named "Robert Sikkink"

DNA junctions (DNAJs) frequently impact clinically relevant genes in tumors and are important for diagnostic and therapeutic purposes. Although routinely screened through fluorescence in situ hybridization assays, such testing only allows the interrogation of single-gene regions or known fusion partners. Comprehensive assessment of DNAJs present across the entire genome can only be determined from whole-genome sequencing.

View Article and Find Full Text PDF

We report on nine draft genomes of Pseudomonas aeruginosa isolates, assembled using a hybrid paired-end and Nextera mate-pair library approach. Eight are of clinical origin, and one is the ATCC 27853 strain. We also report their multilocus sequence types.

View Article and Find Full Text PDF

Background: Recessive genes cause disease when both copies are affected by mutant loci. Resolving the cis/trans relationship of variations has been an important problem both for researchers, and increasingly, clinicians. Of particular concern are patients who have two heterozygous disease-causing mutations and could be diagnosed as affected (one mutation on each allele) or as phenotypically normal (both mutations on the same allele).

View Article and Find Full Text PDF

High-throughput next-generation sequencing provides a revolutionary platform to unravel the precise DNA aberrations concealed within subgroups of tumour cells. However, in many instances, the limited number of cells makes the application of this technology in tumour heterogeneity studies a challenge. In order to address these limitations, we present a novel methodology to partner laser capture microdissection (LCM) with sequencing platforms, through a whole-genome amplification (WGA) protocol performed in situ directly on LCM engrafted cells.

View Article and Find Full Text PDF

Mutations in two large multi-exon genes, PKD1 and PKD2, cause autosomal dominant polycystic kidney disease (ADPKD). The duplication of PKD1 exons 1-32 as six pseudogenes on chromosome 16, the high level of allelic heterogeneity, and the cost of Sanger sequencing complicate mutation analysis, which can aid diagnostics of ADPKD. We developed and validated a strategy to analyze both the PKD1 and PKD2 genes using next-generation sequencing by pooling long-range PCR amplicons and multiplexing bar-coded libraries.

View Article and Find Full Text PDF

Superoxide reductases are a class of non-haem iron enzymes which catalyse the monovalent reduction of the superoxide anion O2- into hydrogen peroxide and water. Treponema pallidum (Tp), the syphilis spirochete, expresses the gene for a superoxide reductase called neelaredoxin, having the iron protein rubredoxin as the putative electron donor necessary to complete the catalytic cycle. In this work, we present the first cloning, overexpression in Escherichia coli and purification of the Tp rubredoxin.

View Article and Find Full Text PDF