Publications by authors named "Robert Siddall"

The development of robots as tools for biological research, sometimes termed "biorobotics", has grown rapidly in recent years, fueled by the proliferation of miniaturized computation and advanced manufacturing techniques. Much of this work is focused on the use of robots as biomechanical models for natural systems. But, increasingly, biomimetic robots are being employed to interact directly with animals, as component parts of ethology studies in the field and behavioral neuroscience studies in the laboratory.

View Article and Find Full Text PDF

Recent observations of wingless animals, including jumping nematodes, springtails, insects, and wingless vertebrates like geckos, snakes, and salamanders, have shown that their adaptations and body morphing are essential for rapid self-righting and controlled landing. These skills can reduce the risk of physical damage during collision, minimize recoil during landing, and allow for a quick escape response to minimize predation risk. The size, mass distribution, and speed of an animal determine its self-righting method, with larger animals depending on the conservation of angular momentum and smaller animals primarily using aerodynamic forces.

View Article and Find Full Text PDF

Biomimetic and bioinspired design is not only a potent resource for roboticists looking to develop robust engineering systems or understand the natural world. It is also a uniquely accessible entry point into science and technology. Every person on Earth constantly interacts with nature, and most people have an intuitive sense of animal and plant behaviour, even without realizing it.

View Article and Find Full Text PDF

Animals use diverse solutions to land on vertical surfaces. Here we show the unique landing of the gliding gecko, Hemidactylus platyurus. Our high-speed video footage in the Southeast Asian rainforest capturing the first recorded, subcritical, short-range glides revealed that geckos did not markedly decrease velocity prior to impact.

View Article and Find Full Text PDF

Arboreal animals face numerous challenges when negotiating complex three-dimensional terrain. Directed aerial descent or gliding flight allows for rapid traversal of arboreal environments, but presents control challenges. Some animals, such as birds or gliding squirrels, have specialized structures to modulate aerodynamic forces while airborne.

View Article and Find Full Text PDF

Arboreal mammals navigate a highly three dimensional and discontinuous habitat. Among arboreal mammals, squirrels demonstrate impressive agility. In a recent "viral" YouTube video, unsuspecting squirrels were mechanically catapulted off of a track, inducing an initially uncontrolled rotation of the body.

View Article and Find Full Text PDF

Aerial robots capable of locomotion in both air and water would enable novel mission profiles in complex environments, such as water sampling after floods or underwater structural inspections. The design of such a vehicle is challenging because it implies significant propulsive and structural design trade-offs for operation in both fluids. In this paper, we present a unique Aquatic Micro Air Vehicle (AquaMAV), which uses a reconfigurable wing to dive into the water from flight, inspired by the plunge diving strategy of water diving birds in the family .

View Article and Find Full Text PDF

Two endothelin antagonists, ZD1611 (3-[4-[3-(3-methoxy-5-methylpyrazin-2-ylsulfamoyl)-2-pyridyl]phenyl]-2,2-dimethylpropanoic acid) and ZD2574 (2-(4-isobutylphenyl)-N-(3-methoxy-5-methylpyrazin-2-yl)pyridine-3-sulfonamide), selective for the ET(A) receptor and intended for use in pulmonary hypertension, were tested in Beagle dogs at various doses for periods of up to 4 weeks. These studies included in vivo telemetric hemodynamic assessment, full histopathological and ultrastructural pathological evaluation of coronary arteries. Both drugs produced arteritis in small- and medium-sized coronary arteries after single or multiple doses, some of which were at or below the ED50.

View Article and Find Full Text PDF