Publications by authors named "Robert Scheinman"

Article Synopsis
  • Systemic use of nanomedicines activates the complement cascade, leading to immune responses that can affect their safety and effectiveness.
  • Research found significant differences in complement activation levels by PEGylated liposomal doxorubicin (PLD) and dextran-coated superparamagnetic iron oxide nanoworms (SPIO NWs), highlighting that factors like age and specific antibodies play important roles in this activation.
  • Anti-PEG IgM levels were identified as strong predictors of high complement activation with PLD, while the relationship with antidextran IgG and IgM for SPIO NWs was weaker, emphasizing the importance of immunoglobulins in complement interactions with nanoparticles.
View Article and Find Full Text PDF

The OPRM1 gene codes for the mu opioid receptor (MOR) and polymorphisms are associated with complex patient clinical responses. The most studied single nucleotide polymorphism (SNP) in OPRM1 is adenine (A) substituted by guanine (G) at position 118 (118A>G, rs1799971) leading to a substitution of asparagine (Asn) for aspartic acid (Asp) at position 40 in the N terminus of the resulting protein. To date, no structural explanation for the associated clinical responses resulting from the 118A>G polymorphism has been proposed.

View Article and Find Full Text PDF

We have reported that anterior cruciate ligament (ACL) injury leads to the differential dysregulation of the complement system in the synovium as compared to meniscus tear (MT) and proposed this as a mechanism for a greater post-injury prevalence of post traumatic osteoarthritis (PTOA). To explore additional roles of complement proteins and regulators, we determined the presence of decay-accelerating factor (DAF), C5b, and membrane attack complexes (MACs, C5b-9) in discarded surgical synovial tissue (DSST) collected during arthroscopic ACL reconstructive surgery, MT-related meniscectomy, osteoarthritis (OA)-related knee replacement surgery and normal controls. Multiplexed immunohistochemistry was used to detect and quantify complement proteins.

View Article and Find Full Text PDF

Effective inhibition of the complement system is needed to prevent the accelerated clearance of nanomaterials by complement cascade and inflammatory responses. Here we show that a fusion construct consisting of human complement receptor 2 (CR2) (which recognizes nanosurface-deposited complement 3 (C3)) and complement receptor 1 (CR1) (which blocks C3 convertases) inhibits complement activation with picomolar to low nanomolar efficacy on many types of nanomaterial. We demonstrate that only a small percentage of nanoparticles are randomly opsonized with C3 both in vitro and in vivo, and CR2-CR1 immediately homes in on this subpopulation.

View Article and Find Full Text PDF

Many aspects of innate immune responses to SARS viruses remain unclear. Of particular interest is the role of emerging neutralizing antibodies against the receptor-binding domain (RBD) of SARS-CoV-2 in complement activation and opsonization. To overcome challenges with purified virions, here we introduce "pseudovirus-like" nanoparticles with ∼70 copies of functional recombinant RBD to map complement responses.

View Article and Find Full Text PDF

The complement system plays a key role in opsonization and immune clearance of engineered nanoparticles. Understanding the efficiency, inter-subject, and inter-strain differences of complement opsonization in preclinical species can help with translational nanomedicine development and improve our ability to model complement response in humans. Dextran-coated superparamagnetic iron oxide (SPIO) nanoparticles and a wide range of non-magnetic iron oxide nanoparticle formulations are widely used in magnetic resonance imaging and as clinically approved iron supplements.

View Article and Find Full Text PDF

Natural IgM antibodies (NAbs) have been shown to recognize injury-associated neoepitopes and to initiate pathogenic complement activation. The NAb termed C2 binds to a subset of phospholipids displayed on injured cells, and its role(s) in arthritis, as well as the potential therapeutic benefit of a C2 NAb-derived ScFv-containing protein fused to a complement inhibitor, complement receptor-related y (Crry), on joint inflammation are unknown. Our first objective was to functionally test mAb C2 binding to apoptotic cells from the joint and also evaluate its inflammation enhancing capacity in collagen antibody-induced arthritis (CAIA).

View Article and Find Full Text PDF

Bone marrow (BM) is the central immunological organ and the origin of hematological diseases. Efficient and specific drug delivery to the BM is an unmet need. We tested delivery of fluorescent indocarbocyanine lipids (ICLs, DiR, DiD, DiI) as a model lipophilic cargo, via different carriers.

View Article and Find Full Text PDF

Complement is one of the critical branches of innate immunity that determines the recognition of engineered nanoparticles by immune cells. Antibody-targeted iron oxide nanoparticles are a popular platform for magnetic separations, in vitro diagnostics, and molecular imaging. We used 60 nm cross-linked iron oxide nanoworms (CLIO NWs) modified with antibodies against Her2/neu and EpCAM, which are common markers of blood-borne cancer cells, to understand the role of complement in the selectivity of targeting of tumor cells in whole blood.

View Article and Find Full Text PDF

The complement system plays an important role in the pathogenesis of rheumatoid arthritis (RA). Besides driving lectin pathway (LP) activation, the mannan-binding lectin (MBL)-associated serine proteases (MASPs) also play a key role in regulating the alternative pathway (AP). We evaluated the effects of N-acetylgalactosamine (GalNAc)-conjugated MASP-1 and MASP-2 duplexes and in mice with and without arthritis to examine whether knockdown of MASP-1 and MASP-2 expression affects the development of arthritis.

View Article and Find Full Text PDF

Feraheme (ferumoxytol), a negatively charged, carboxymethyl dextran-coated ultrasmall superparamagnetic iron oxide nanoparticle (USPIO, 30 nm, -16 mV), is clinically approved as an iron supplement and is used off-label for magnetic resonance imaging (MRI) of macrophage-rich lesions, but the mechanism of recognition is not known. We investigated mechanisms of uptake of Feraheme by various types of macrophages and . The uptake by mouse peritoneal macrophages was not inhibited in complement-deficient serum.

View Article and Find Full Text PDF

Diseases of the joints affect over 10% of the world's population, resulting in significant morbidity. There is an unmet need in strategies for specific delivery of therapeutics to the joints. Collagen type II is synthesized by chondrocytes and is mainly restricted to the cartilage and tendons.

View Article and Find Full Text PDF

Complement activation plays an important role in pharmacokinetic and performance of intravenously administered nanomedicines. Significant efforts have been directed toward engineering of nanosurfaces with low complement activation, but due to promiscuity of complement factors and redundancy of pathways, it is still a major challenge. Cell membrane-anchored Decay Accelerating Factor (DAF, a.

View Article and Find Full Text PDF

In the version of this Article originally published, a technical error led to Fig. 1a containing '!!!!!!!!' above the scale bar. This has now been corrected in all versions of the Article.

View Article and Find Full Text PDF

Deposition of complement factors (opsonization) on nanoparticles may promote clearance from the blood by macrophages and trigger proinflammatory responses, but the mechanisms regulating the efficiency of complement activation are poorly understood. We previously demonstrated that opsonization of superparamagnetic iron oxide (SPIO) nanoworms with the third complement protein (C3) was dependent on the biomolecule corona of the nanoparticles. Here we show that natural antibodies play a critical role in C3 opsonization of SPIO nanoworms and a range of clinically approved nanopharmaceuticals.

View Article and Find Full Text PDF

Mannan-binding lectin-associated serine protease 3 (MASP-3) regulates the alternative pathway of complement and is predominantly synthesized in the liver. The role of liver-derived MASP-3 in the pathogenesis of rheumatoid arthritis (RA) is unknown. We hypothesized that liver-derived MASP-3 is essential for the development of joint damage and that targeted inhibition of MASP-3 in the liver can attenuate arthritis.

View Article and Find Full Text PDF

Opsonization (coating) of nanoparticles with complement C3 component is an important mechanism that triggers immune clearance and downstream anaphylactic and proinflammatory responses. The variability of complement C3 binding to nanoparticles in the general population has not been studied. We examined complement C3 binding to dextran superparamagnetic iron oxide nanoparticles (superparamagnetic iron oxide nanoworms, SPIO NWs, 58 and 110 nm) and clinically approved nanoparticles (carboxymethyl dextran iron oxide ferumoxytol (Feraheme, 28 nm), highly PEGylated liposomal doxorubicin (LipoDox, 88 nm), and minimally PEGylated liposomal irinotecan (Onivyde, 120 nm)) in sera from healthy human individuals.

View Article and Find Full Text PDF

Accumulation of intravenously injected cytotoxic liposomes in the skin induces serious toxicity. We used single time point and longitudinal intravital microscopy to understand skin accumulation dynamics of non-PEGylated and PEGylated liposomes after systemic injection into mice. Non-PEGylated egg phosphatidylcholine (PC) liposomes showed short circulation half-life (1.

View Article and Find Full Text PDF

Complement plays an important role in the pathogenesis of rheumatoid arthritis. Although the alternative pathway (AP) is known to play a key pathogenic role in models of rheumatoid arthritis, the importance of the lectin pathway (LP) pattern recognition molecules such as ficolin (FCN) A, FCN B, and collectin (CL)-11, as well as the activating enzyme mannose-binding lectin-associated serine protease-2 (MASP-2), are less well understood. We show in this article that and mice are fully susceptible to collagen Ab-induced arthritis (CAIA).

View Article and Find Full Text PDF

The complement system is proposed to play an important role in the pathogenesis of rheumatoid arthritis (RA). The complement system mannan-binding lectin-associated serine proteases (MASP)-1/3 cleave pro-factor D (proDf; inactive) into Df (active), but it is unknown where this cleavage occurs and whether inhibition of MASP-1/3 is a relevant therapeutic strategy for RA. In the present study, we show that the cleavage of proDf into Df by MASP-1/3 can occur in the circulation and that inhibition of MASP-1/3 by gene silencing is sufficient to ameliorate collagen Ab-induced arthritis in mice.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is an inflammatory autoimmune joint disease in which the complement system plays an important role. Of the several components of complement, current evidence points to C5 as the most important inducer of inflammation. Several groups generated Abs or small interfering RNAs (siRNAs) or small molecule inhibitors against C5 and C5aR1 (CD88) that have showed some efficacy in RA in animal models.

View Article and Find Full Text PDF

NF-κB has long been known to play an important role in autoimmune diseases such as rheumatoid arthritis (RA). Indeed, as our understanding of how NF-κB is utilized has increased, we have been hard put to find a process not associated with this transcription factor family in some way. However, new data originating, in part, from genome-wide association studies have demonstrated that very specific alterations in components of the NF-κB pathway are sufficient to confer increased risk of developing disease.

View Article and Find Full Text PDF

Retinal pigment epithelium, which forms the outer blood-retinal barrier, is a critical barrier for transport of drugs to the retina. The purpose of this study was to develop a pigmented MDCK (P-MDCK) cell line as a rapidly established in vitro model for the outer blood-retinal barrier to assess the influence of melanin pigment on solute permeability. A melanin synthesizing P-MDCK cell line was developed by lentiviral transduction of human tyrosinase and p-protein genes in MDCK (NBL-2) cells.

View Article and Find Full Text PDF