Annu Int Conf IEEE Eng Med Biol Soc
July 2024
Approximately half of stroke survivors experience a decrease in upper extremity motor control related to decreased proprioceptive abilities. This study continues efforts to use sensory augmentation to address proprioceptive deficits experienced post-stroke. Previous studies using 1- and 2-dimensional supplemental vibrotactile feedback have successfully improved the accuracy of reaching movements performed without concurrent vision.
View Article and Find Full Text PDFBackground: Understanding the role of adherence to home exercise programs for survivors of stroke is critical to ensure patients perform prescribed exercises and maximize effectiveness of recovery.
Methods: Survivors of hemiparetic stroke with impaired motor function were recruited into a 7-day study designed to test the utility and usability of a low-cost wearable system and progressive-challenge cued exercise program for encouraging graded-challenge exercise at-home. The wearable system comprised two wrist-worn MetaMotionR+ activity monitors and a custom smartphone app.
Previous studies suggest that bimanual coordination recruits neural mechanisms that explicitly couple control of the arms, resulting in symmetric kinematics. However, the higher symmetry for actions that require congruous joint motions compared with noncongruous joint motions calls into question the concept of control coupling as a general policy. An alternative view proposes that codependence might emerge from an optimal feedback controller that minimizes control effort and costs in task performance.
View Article and Find Full Text PDFBackground: Muscles in the post-stroke arm commonly demonstrate abnormal reflexes that result in increased position- and velocity-dependent resistance to movement. We sought to develop a reliable way to quantify mechanical consequences of abnormal neuromuscular mechanisms throughout the reachable workspace in the hemiparetic arm post-stroke.
Methods: Survivors of hemiparetic stroke (HS) and neurologically intact (NI) control subjects were instructed to relax as a robotic device repositioned the hand of their hemiparetic arm between several testing locations that sampled the arm's passive range of motion.
Prior research has shown that coordination of bilateral arm movements might be attributed to either control policies that minimize performance and control costs regardless of bilateral symmetry or by control coupling, which activates bilaterally homologous muscles as a single unit to achieve symmetric performance. We hypothesize that independent bimanual control (movements of one arm are performed without influence on the other) and codependent bimanual control (two arms are constrained to move together with high spatiotemporal symmetry) are two extremes on a coordination spectrum that can be negotiated to meet infinite variations in task demands. To better understand and distinguish between these views, we designed a task where minimization of either control costs or asymmetry would yield different patterns of coordination.
View Article and Find Full Text PDFWe examined the extent to which intentionally underperforming a goal-directed reaching task impacts how memories of recent performance contribute to sensorimotor adaptation. Healthy human subjects performed computerized cognition testing and an assessment of sensorimotor adaptation, wherein they grasped the handle of a horizontal planar robot while making goal-directed out-and-back reaching movements. The robot exerted forces that resisted hand motion with a spring-like load that changed unpredictably between movements.
View Article and Find Full Text PDFRecent advances in wearable sensors and computing have made possible the development of novel sensory augmentation technologies that promise to enhance human motor performance and quality of life in a wide range of applications. We compared the objective utility and subjective user experience for two biologically inspired ways to encode movement-related information into supplemental feedback for the real-time control of goal-directed reaching in healthy, neurologically intact adults. One encoding scheme mimicked visual feedback encoding by converting real-time hand position in a Cartesian frame of reference into supplemental kinesthetic feedback provided by a vibrotactile display attached to the non-moving arm and hand.
View Article and Find Full Text PDFThe preparation and molecular structures of two five-coordinate cobalt(II) picket fence porphyrinates with imidazole ligands are described, [Co(TpivPP)(L)] (TpivPP, dianion of picket fence porphyrin). The ligands are the unhindered imidazole, 1-ethylimidazole, and the sterically hindered imidazole, 1,2-dimethylimidazole. Although the equatorial aspects of the geometry are quite equivalent, the axial coordination group geometry strongly reflects the differing steric requirements of the axial ligand.
View Article and Find Full Text PDFPrior studies have shown that the accuracy and efficiency of reaching can be improved using novel sensory interfaces to apply task-specific vibrotactile feedback (VTF) during movement. However, those studies have typically evaluated performance after less than 1 h of training using VTF. Here, we tested the effects of extended training using a specific form of vibrotactile cues-supplemental kinesthetic VTF-on the accuracy and temporal efficiency of goal-directed reaching.
View Article and Find Full Text PDFWe examined a key aspect of sensorimotor skill: the capability to correct performance errors that arise mid-movement. Participants grasped the handle of a robot that imposed a nominal viscous resistance to hand movement. They watched a target move pseudo-randomly just above the horizontal plane of hand motion and initiated quick interception movements when cued.
View Article and Find Full Text PDFSensory augmentation technologies are being developed to convey useful supplemental sensory cues to people in comfortable, unobtrusive ways for the purpose of improving the ongoing control of volitional movement. Low-cost vibration motors are strong contenders for providing supplemental cues intended to enhance or augment closed-loop feedback control of limb movements in patients with proprioceptive deficits, but who still retain the ability to generate movement. However, it remains unclear what form such cues should take and where on the body they may be applied to enhance the perception-cognition-action cycle implicit in closed-loop feedback control.
View Article and Find Full Text PDFBackground: Overprescription of pain medications directly fuels the opioid epidemic. Veterans are profoundly impacted. Tapered dose protocols may reduce excessive prescribing.
View Article and Find Full Text PDFRobust control of action relies on the ability to perceive, integrate, and act on information from multiple sensory modalities including vision and proprioception. How does the brain combine sensory information to regulate ongoing mechanical interactions between the body and its physical environment? Some behavioral studies suggest that the rules governing multisensory integration for action may differ from the maximum likelihood estimation rules that appear to govern multisensory integration for many perceptual tasks. We used functional magnetic resonance (MR) imaging techniques, a MR-compatible robot, and a multisensory feedback control task to test that hypothesis by investigating how neural mechanisms involved in regulating hand position against mechanical perturbation respond to the presence and fidelity of visual and proprioceptive information.
View Article and Find Full Text PDFStopping is a crucial yet under-studied action for planning and producing meaningful and efficient movements. In this review, we discuss classical human psychophysics studies as well as those using engineered systems that aim to develop models of motor control of the upper limb. We present evidence for a hybrid model of motor control, which has an evolutionary advantage due to division of labor between cerebral hemispheres.
View Article and Find Full Text PDFWe examined how implicit and explicit memories contribute to sensorimotor adaptation of movement extent during goal-directed reaching. Twenty subjects grasped the handle of a horizontal planar robot that rendered spring-like resistance to movement. Subjects made rapid "out-and-back" reaches to capture a remembered visual target at the point of maximal reach extent.
View Article and Find Full Text PDFMany survivors of stroke have persistent somatosensory deficits on the contralesional side of their body. Non-invasive supplemental feedback of limb movement could enhance the accuracy and efficiency of actions involving the upper extremity, potentially improving quality of life after stroke. In this proof-of-concept study, we evaluated the feasibility and the immediate effects of providing supplemental kinesthetic feedback to stroke survivors, performing goal-directed actions with the contralesional arm.
View Article and Find Full Text PDFProprioception provides crucial information necessary for determining limb position and movement, and plausibly also for updating internal models that might underlie the control of movement and posture. Seminal studies of upper-limb movements in individuals living with chronic, large fiber deafferentation have provided evidence for the role of proprioceptive information in the hypothetical formation and maintenance of internal models to produce accurate motor commands. Vision also contributes to sensorimotor functions but cannot fully compensate for proprioceptive deficits.
View Article and Find Full Text PDFVibrotactile interfaces are an inexpensive and non-invasive way to provide performance feedback to body-machine interface users. Interfaces for the upper extremity have utilized a multi-channel approach using an array of vibration motors placed on the upper extremity. However, for successful perception of multi-channel vibrotactile feedback on the arm, we need to account for vibration propagation across the skin.
View Article and Find Full Text PDFThe development of an easy to implement, quantitative measure to examine vibration perception would be useful for future application in clinical settings. Vibration sense in the lower limb of younger and older adults was examined using the method of constant stimuli (MCS) and the two-alternative forced choice paradigm. The focus of this experiment was to determine an appropriate stimulation site on the lower limb (tendon versus bone) to assess vibration threshold and to determine if the left and right legs have varying thresholds.
View Article and Find Full Text PDFVibrotactile feedback (VTF) has been proposed as a non-invasive way to augment impaired or lost kinesthetic feedback in certain patient populations, thereby enhancing the real-time control of purposeful limb movements and quality of life. We used a dual tasking scenario to investigate the effects of cognitive load and short-term VTF training on VTF-guided reaching. Participants grasped the handle of a planar manipulandum with one hand and received VTF of its motion via a vibrotactile display attached to the non-moving arm.
View Article and Find Full Text PDFBody-machine interfaces (BMIs) provide a non-invasive way to control devices. Vibrotactile stimulation has been used by BMIs to provide performance feedback to the user, thereby reducing visual demands. To advance the goal of developing a compact, multivariate vibrotactile display for BMIs, we performed two psychophysical experiments to determine the acuity of vibrotactile perception across the arm.
View Article and Find Full Text PDFWe examined vibrotactile stimulation as a form of supplemental limb state feedback to enhance planning and ongoing control of goal-directed movements. Subjects wore a two-dimensional vibrotactile display on their nondominant arm while performing horizontal planar reaching with the dominant arm. The vibrotactile display provided feedback of hand position such that small hand displacements were more easily discriminable using vibrotactile feedback than with intrinsic proprioceptive feedback.
View Article and Find Full Text PDFExtremity injuries make up the most common survivable injuries in vehicular accidents and modern military conflicts. A majority of these injuries involve volumetric muscle loss (VML). The potential for donor site morbidity may limit the clinical use of autologous muscle grafts for VML injuries.
View Article and Find Full Text PDFSkeletal muscle is inept in regenerating after traumatic injuries due to significant loss of basal lamina and the resident satellite cells. To improve regeneration of skeletal muscle, we have developed biomimetic sponges composed of collagen, gelatin, and laminin (LM)-111 that were crosslinked with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC). Collagen and LM-111 are crucial components of the muscle extracellular matrix and were chosen to impart bioactivity whereas gelatin and EDC were used to provide mechanical strength to the scaffold.
View Article and Find Full Text PDFSkeletal muscle has a remarkable regenerative capability following mild physical or chemical insult. However, following a critical loss of muscle tissue, the regeneration process is impaired due to the inadequate myogenic activity of muscle resident stem cells (i.e.
View Article and Find Full Text PDF