Publications by authors named "Robert Santore"

The equilibrium partitioning sediment benchmarks (ESBs) derived by the US Environmental Protection Agency (USEPA) in 2005 provide a mechanistic framework for understanding metal bioavailability in sediments by considering equilibrium partitioning (EqP) theory, which predicts that metal bioavailability in sediments is determined largely by partitioning to sediment particles. Factors that favor the partitioning of metals to sediment particles, such as the presence of acid volatile sulfide (AVS) and sediment organic matter, reduce metal bioavailability to benthic organisms. Because ESBs link metal bioavailability to partitioning to particles, they also predict that measuring metals in porewater can lead to a more accurate assessment of bioavailability and toxicity to benthic organisms.

View Article and Find Full Text PDF

The US Environmental Protection Agency Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Metal Mixtures (Cadmium, Copper, Lead, Nickel, Silver and Zinc) equilibrium partitioning approach causally link metal concentrations and toxicological effects; they apply to sediment and porewater (i.e., interstitial water).

View Article and Find Full Text PDF

Dissolved organic carbon (DOC) is known to ameliorate the toxicity of the trace metal nickel (Ni) to aquatic animals. In theory, this effect is mediated by the capacity of DOC to bind Ni, rendering it less bioavailable, with the resulting reduction in accumulation limiting toxicological effects. However, there is a lack of experimental data examining Ni accumulation in marine settings with natural sources of DOC.

View Article and Find Full Text PDF

We studied biotic ligand model (BLM) predictions of the toxicity of nickel (Ni) and zinc (Zn) in natural waters from Illinois and Minnesota, USA, which had combinations of pH, hardness, and dissolved organic carbon (DOC) more extreme than 99.7% of waters in a nationwide database. We conducted 7-day chronic tests with Ceriodaphnia dubia and 96-hour acute and 14-day chronic tests with Neocloeon triangulifer and estimated median lethal concentrations and 20% effect concentrations for both species.

View Article and Find Full Text PDF

US Environmental Protection Agency (USEPA) Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Metal Mixtures are based on the principle that metals toxicity to benthic organisms is determined by bioavailable metals concentrations in porewater. One ESB is based on the difference between simultaneously extracted metal (SEM) and acid volatile sulfide (AVS) concentrations in sediment (excess SEM). The excess SEM ESBs include a lower uncertainty bound, below which most samples (95%) are expected to be "nontoxic" (defined as a bioassay mortality rate ≤24%), and an upper uncertainty bound, above which most samples (95%) are expected to be "toxic" (defined as a mortality rate >24%).

View Article and Find Full Text PDF

A review of nickel (Ni) toxicity to aquatic organisms was conducted to determine the primary water quality factors that affect Ni toxicity and to provide information for the development and testing of a biotic ligand model (BLM) for Ni. Acute and chronic data for 66 aquatic species were compiled for the present review. The present review found that dissolved organic carbon (DOC) and hardness act as toxicity-modifying factors (TMFs) because they reduced Ni toxicity to fish and aquatic invertebrates, and these effects were consistent in acute and chronic exposures.

View Article and Find Full Text PDF

Toxicity-modifying factors can be modeled either empirically with linear regression models or mechanistically, such as with the biotic ligand model (BLM). The primary factors affecting the toxicity of nickel to aquatic organisms are hardness, dissolved organic carbon (DOC), and pH. Interactions between these terms were also considered.

View Article and Find Full Text PDF

An increasing number of metal bioavailability models are available for use in setting regulations and conducting risk assessments in aquatic systems. Selection of the most appropriate model is dependent on the user's needs but will always benefit from an objective, comparative assessment of the performance of available models. In 2017, an expert workshop developed procedures for assessing metal bioavailability models.

View Article and Find Full Text PDF

Since the early 2000s, biotic ligand models and related constructs have been a dominant paradigm for risk assessment of aqueous metals in the environment. We critically review 1) the evidence for the mechanistic approach underlying metal bioavailability models; 2) considerations for the use and refinement of bioavailability-based toxicity models; 3) considerations for the incorporation of metal bioavailability models into environmental quality standards; and 4) some consensus recommendations for developing or applying metal bioavailability models. We note that models developed to date have been particularly challenged to accurately incorporate pH effects because they are unique with multiple possible mechanisms.

View Article and Find Full Text PDF

A large water quality data set, representing more than 100 surface-water locations sampled from 2007 to 2017 in the Los Alamos area of New Mexico, USA's Pajarito Plateau, was assembled to evaluate Al concentrations in unfiltered and filtered samples. Aluminum concentrations often exceeded United States Environmental Protection Agency (USEPA) and New Mexico ambient water quality criteria (AWQC), regardless of filter size and sample location. However, AWQC are based on laboratory toxicity studies using soluble Al salts and do not reflect natural conditions in Pajarito Plateau surface waters.

View Article and Find Full Text PDF

Since the mid-1970s, thousands of studies have evaluated the toxicity of various chemicals to aquatic organisms. Results from many of these studies have been used to develop species sensitivity distributions (SSDs) or genus sensitivity distributions (GSDs) for deriving water quality guidelines. Recently, there has been more emphasis on evaluating the toxicity of chemicals to sensitive organisms rather than the entire range of sensitivities.

View Article and Find Full Text PDF

In 2007, the Biotic Ligand Model (BLM) became the basis for the US Environmental Protection Agency (USEPA) freshwater water quality criteria (WQC) for Cu. Applying the BLM typically results in time-variable WQC, which are not unique to the BLM; they result from any criteria approach that depends on water chemistry (e.g.

View Article and Find Full Text PDF

There is concern over whether regulatory criteria for copper (Cu) are protective against chemosensory and behavioral impairment in aquatic organisms. We compiled Cu toxicity data for these and other sublethal endpoints in 35 tests with saltwater organisms and compared the Cu toxicity thresholds with biotic ligand model (BLM)-based estimated chronic limits (ECL values, which are 20% effect concentrations [EC20s] for the embryo-larval life stage of the blue mussel [Mytilus edulis], a saltwater species sensitive to Cu that has historically been used to derive saltwater Cu criteria). Only 8 of the 35 tests had sufficient toxicity and chemistry data to support unequivocal conclusions (i.

View Article and Find Full Text PDF

The acute toxicity of silver to Ceriodaphnia dubia was investigated in laboratory reconstituted waters as well as in natural waters and reconstituted waters with natural organic matter. The water quality characteristics of the laboratory reconstituted waters were systematically varied. The parameters that demonstrated an ability to mitigate the acute toxic effects of silver were chloride, sodium, organic carbon, and chromium reducible sulfide.

View Article and Find Full Text PDF

Aluminum (Al) toxicity to aquatic organisms is strongly affected by water chemistry. Toxicity-modifying factors such as pH, dissolved organic carbon (DOC), hardness, and temperature have a large impact on the bioavailability and toxicity of Al to aquatic organisms. The importance of water chemistry on the bioavailability and toxicity of Al suggests that interactions between Al and chemical constituents in exposures to aquatic organisms can affect the form and reactivity of Al, thereby altering the extent to which it interacts with biological membranes.

View Article and Find Full Text PDF

Although it is well known that increasing water hardness and dissolved organic carbon (DOC) concentrations mitigate the toxicity of aluminum (Al) to freshwater organisms in acidic water (i.e., pH < 6), these effects are less well characterized in natural waters at circumneutral pHs for which most aquatic life regulatory protection criteria apply (i.

View Article and Find Full Text PDF

The chemistry, bioavailability, and toxicity of aluminum (Al) in the aquatic environment are complex and affected by a wide range of water quality characteristics (including pH, hardness, and dissolved organic carbon). Data gaps in Al ecotoxicology exist for pH ranges representative of natural surface waters (pH 6-8). To address these gaps, a series of chronic toxicity tests were performed at pH 6 with 8 freshwater species, including 2 fish (Pimephales promelas and Danio rerio), an oligochaete (Aeolosoma sp.

View Article and Find Full Text PDF

The US Environmental Protection Agency's (USEPA's) current ambient water quality criteria (AWQC) for lead (Pb) in freshwater were developed in 1984. The criteria are adjusted for hardness, but more recent studies have demonstrated that other parameters, especially dissolved organic carbon (DOC) and pH, have a much stronger influence on Pb bioavailability. These recent studies have been used to support development of a biotic ligand model (BLM) for Pb in freshwater, such that acute and chronic Pb toxicity can be predicted over a wide range of water chemistry conditions.

View Article and Find Full Text PDF

A multimetal, multiple binding site version of the biotic ligand model (mBLM) has been developed for predicting and explaining the bioavailability and toxicity of mixtures of metals to aquatic organisms. The mBLM was constructed by combining information from single-metal BLMs to preserve compatibility between the single-metal and multiple-metal approaches. The toxicities from individual metals were predicted by assuming additivity of the individual responses.

View Article and Find Full Text PDF

As part of the Metal Mixture Modeling Evaluation (MMME) project, models were developed by the National Institute of Advanced Industrial Science and Technology (Japan), the US Geological Survey (USA), HDR|HydroQual (USA), and the Centre for Ecology and Hydrology (United Kingdom) to address the effects of metal mixtures on biological responses of aquatic organisms. A comparison of the 4 models, as they were presented at the MMME workshop in Brussels, Belgium (May 2012), is provided in the present study. Overall, the models were found to be similar in structure (free ion activities computed by the Windermere humic aqueous model [WHAM]; specific or nonspecific binding of metals/cations in or on the organism; specification of metal potency factors or toxicity response functions to relate metal accumulation to biological response).

View Article and Find Full Text PDF

The bioavailability and toxicity of copper (Cu) in Shelter Island Yacht Basin (SIYB), San Diego, CA, USA, was assessed with simultaneous toxicological, chemical, and modeling approaches. Toxicological measurements included laboratory toxicity testing with Mytilus galloprovincialis (Mediterranean mussel) embryos added to both site water (ambient) and site water spiked with multiple Cu concentrations. Chemical assessment of ambient samples included total and dissolved Cu concentrations, and Cu complexation capacity measurements.

View Article and Find Full Text PDF

Populations of white sturgeon (Acipenser transmontanus) are in decline in North America. This is attributed, primarily, to poor recruitment, and white sturgeon are listed as threatened or endangered in several parts of British Columbia, Canada, and the United States. In the Columbia River, effects of metals have been hypothesized as possible contributing factors.

View Article and Find Full Text PDF

Acute copper (Cu) toxicity tests (48-h LC50) using the euryhaline rotifer Brachionus plicatilis were performed to assess the effects of salinity (3, 16, 30 ppt) and dissolved organic carbon (DOC, ∼ 1.1, ∼ 3.1, ∼ 4.

View Article and Find Full Text PDF

Cyanide can be toxic to aquatic organisms, and the U.S. Environmental Protection Agency has developed ambient water-quality criteria to protect aquatic life.

View Article and Find Full Text PDF