Publications by authors named "Robert Sachdev"

Article Synopsis
  • - Accurate assessment of post-stroke deficits is essential for research, and advances in machine learning help quantify rodent motor behavior, but identifying specific upper extremity deficits remains unclear.
  • - The study utilized techniques like proximal middle cerebral artery occlusion (MCAO) and cortical photothrombosis (PT) in mice, using tests and advanced imaging to analyze how stroke affects motor skills, particularly focusing on the forepaw's movement.
  • - Findings showed that while general stroke volume didn't predict motor issues, specific patterns like forepaw slips and reaching success related directly to the size of cortical lesions, highlighting the importance of in-depth behavioral assessments in understanding stroke effects in preclinical research.
View Article and Find Full Text PDF

The deepest layer of the cortex (layer 6b [L6b]) contains relatively few neurons, but it is the only cortical layer responsive to the potent wake-promoting neuropeptide orexin/hypocretin. Can these few neurons significantly influence brain state? Here, we show that L6b-photoactivation causes a surprisingly robust enhancement of attention-associated high-gamma oscillations and population spiking while abolishing slow waves in sleep-deprived mice. To explain this powerful impact on brain state, we investigated L6b's synaptic output using optogenetics, electrophysiology, and monoCaTChR ex vivo.

View Article and Find Full Text PDF

Neocortical layer 1 has been proposed to be at the center for top-down and bottom-up integration. It is a locus for interactions between long-range inputs, layer 1 interneurons, and apical tuft dendrites of pyramidal neurons. While input to layer 1 has been studied intensively, the level and effect of input to this layer has still not been completely characterized.

View Article and Find Full Text PDF

The use of head fixation has become routine in systems neuroscience. However, whether the behavior changes with head fixation, whether animals can learn aspects of a task while freely moving and transfer this knowledge to the head fixed condition, has not been examined in much detail. Here, we used a novel floating platform, the "Air-Track", which simulates free movement in a real-world environment to address the effect of head fixation and developed methods to accelerate training of behavioral tasks for head fixed mice.

View Article and Find Full Text PDF

Navigation through complex environments requires motor planning, motor preparation, and the coordination between multiple sensory-motor modalities. For example, the stepping motion when we walk is coordinated with motion of the torso, arms, head, and eyes. In rodents, movement of the animal through the environment is coordinated with whisking.

View Article and Find Full Text PDF

The lipid phosphatase PTEN (phosphatase and tensin homologue on chromosome 10) is a key tumour suppressor gene and an important regulator of neuronal signalling. PTEN mutations have been identified in patients with autism spectrum disorders, characterized by macrocephaly, impaired social interactions and communication, repetitive behaviour, intellectual disability, and epilepsy. PTEN enzymatic activity is regulated by a cluster of phosphorylation sites at the C-terminus of the protein.

View Article and Find Full Text PDF

Prompt execution of planned motor action is essential for survival. The interactions between frontal cortical circuits and the basal ganglia are central to goal-oriented action selection and initiation. In rodents, the ventromedial thalamic nucleus (VM) is one of the critical nodes that conveys the output of the basal ganglia to the frontal cortical areas including the anterior lateral motor cortex (ALM).

View Article and Find Full Text PDF

Computer vision approaches have made significant inroads into offline tracking of behavior and estimating animal poses. In particular, because of their versatility, deep-learning approaches have been gaining attention in behavioral tracking without any markers. Here, we developed an approach using DeepLabCut for real-time estimation of movement.

View Article and Find Full Text PDF

In this review article, we highlight several disparate ideas that are linked to changes in brain state (i.e., sleep to arousal, Down to Up, synchronized to de-synchronized).

View Article and Find Full Text PDF

In the course of a day, brain states fluctuate, from conscious awake information-acquiring states to sleep states, during which previously acquired information is further processed and stored as memories. One hypothesis is that memories are consolidated and stored during "offline" states such as sleep, a process thought to involve transfer of information from the hippocampus to other cortical areas. Up and Down states (UDS), patterns of activity that occur under anesthesia and sleep states, are likely to play a role in this process, although the nature of this role remains unclear.

View Article and Find Full Text PDF

Layer 6b (L6b), the deepest neocortical layer, projects to cortical targets and higher-order thalamus and is the only layer responsive to the wake-promoting neuropeptide orexin/hypocretin. These characteristics suggest that L6b can strongly modulate brain state, but projections to L6b and their influence remain unknown. Here, we examine the inputs to L6b ex vivo in the mouse primary somatosensory cortex with rabies-based retrograde tracing and channelrhodopsin-assisted circuit mapping in brain slices.

View Article and Find Full Text PDF

A central function of the brain is to plan, predict, and imagine the effect of movement in a dynamically changing environment. Here we show that in mice head-fixed in a plus-maze, floating on air, and trained to pick lanes based on visual stimuli, the asymmetric movement, and position of whiskers on the two sides of the face signals whether the animal is moving, turning, expecting reward, or licking. We show that (1) whisking asymmetry is coordinated with behavioral state, and that behavioral state can be decoded and predicted based on asymmetry, (2) even in the absence of tactile input, whisker positioning and asymmetry nevertheless relate to behavioral state, and (3) movement of the nose correlates with asymmetry, indicating that facial expression of the mouse is itself correlated with behavioral state.

View Article and Find Full Text PDF

The topographic map in layer 4 of somatosensory cortex is usually specified early postnatally and stable thereafter. Genital cortex, however, undergoes a sex-hormone- and sexual-touch-dependent pubertal expansion. Here, we image pubertal development of genital cortex in Scnn1a-Tg3-Cre mice, where transgene expression has been shown to be restricted to layer 4 neurons with primary sensory cortex identity.

View Article and Find Full Text PDF

One of the principal functions of the brain is to control movement and rapidly adapt behavior to a changing external environment. Over the last decades our ability to monitor activity in the brain, manipulate it while also manipulating the environment the animal moves through, has been tackled with increasing sophistication. However, our ability to track the movement of the animal in real time has not kept pace.

View Article and Find Full Text PDF

The advent of optogenetic methods has made it possible to use endogeneously produced molecules to image and manipulate cellular, subcellular, and synaptic activity. It has also led to the development of photoactivatable calcium-dependent indicators that mark active synapses, neurons, and circuits. Furthermore, calcium-dependent photoactivation can be used to trigger gene expression in active neurons.

View Article and Find Full Text PDF

Marking functionally distinct neuronal ensembles with high spatiotemporal resolution is a key challenge in systems neuroscience. We recently introduced CaMPARI, an engineered fluorescent protein whose green-to-red photoconversion depends on simultaneous light exposure and elevated calcium, which enabled marking active neuronal populations with single-cell and subsecond resolution. However, CaMPARI (CaMPARI1) has several drawbacks, including background photoconversion in low calcium, slow kinetics and reduced fluorescence after chemical fixation.

View Article and Find Full Text PDF

This review article addresses the function of the layers of the cerebral cortex. We develop the perspective that cortical layering needs to be understood in terms of its functional anatomy, i.e.

View Article and Find Full Text PDF

Here, we describe an automated optical method for tracking animal behavior in both head-fixed and freely moving animals, in real time and offline. It takes advantage of an off-the-shelf camera system, the Pixy camera, designed as a fast vision sensor for robotics that uses a color-based filtering algorithm at 50 Hz to track objects. Using customized software, we demonstrate the versatility of our approach by first tracking the rostro-caudal motion of individual adjacent row (D1, D2) or arc whiskers (β, γ), or a single whisker and points on the whisker pad, in head-fixed mice performing a tactile task.

View Article and Find Full Text PDF

Key Points: The genetically encoded fluorescent calcium integrator calcium-modulated photoactivatable ratiobetric integrator (CaMPARI) reports calcium influx induced by synaptic and neural activity. Its fluorescence is converted from green to red in the presence of violet light and calcium. The rate of conversion - the sensitivity to activity - is tunable and depends on the intensity of violet light.

View Article and Find Full Text PDF

Natural behavior occurs in multiple sensory and motor modalities and in particular is dependent on sensory feedback that constantly adjusts behavior. To investigate the underlying neuronal correlates of natural behavior, it is useful to have access to state-of-the-art recording equipment (e.g.

View Article and Find Full Text PDF

A widely accepted view is that wakefulness is a state in which the entire cortical mantle is persistently activated, and therefore desynchronized. Consequently, the EEG is dominated by low-amplitude, high-frequency fluctuations. This view is currently under revision because the 1-4 Hz delta rhythm is often evident during "quiet" wakefulness in rodents and nonhuman primates.

View Article and Find Full Text PDF

Impaired consciousness in temporal lobe seizures has a major negative impact on quality of life. The prevailing view holds that this disorder impairs consciousness by seizure spread to the bilateral temporal lobes. We propose instead that seizures invade subcortical regions and depress arousal, causing impairment through decreases rather than through increases in activity.

View Article and Find Full Text PDF

Background: Brain signaling requires energy. The cost of maintaining and supporting energetically demanding neurons is the key constraint on brain size. The dramatic increase in brain size among mammals and birds cannot be understood without solving this conundrum: larger brains, with more neurons, consume more energy.

View Article and Find Full Text PDF

Two-photon imaging of cortical neurons in vivo has provided unique insights into the structure, function, and plasticity of cortical networks, but this method does not currently allow simultaneous imaging of neurons in the superficial and deepest cortical layers. Here, we describe a simple modification that enables simultaneous, long-term imaging of all cortical layers. Using a chronically implanted glass microprism in barrel cortex, we could image the same fluorescently labeled deep-layer pyramidal neurons across their entire somatodendritic axis for several months.

View Article and Find Full Text PDF

Long-range corticocortical communication may have important roles in context-dependent sensory processing, yet we know very little about how these pathways influence their target regions. We studied the influence of primary motor cortex activity on primary somatosensory cortex in the mouse whisker system. We show that primary motor and somatosensory cortices undergo coherent, context-dependent changes in network state.

View Article and Find Full Text PDF