Mutations in more than half of human connexin genes encoding gap junction (GJ) subunits have been linked to inherited human diseases. Functional studies of human GJ channels are essential for revealing mechanistic insights into the etiology of disease-linked connexin mutants. However, the commonly used Xenopus oocytes, N2A, HeLa, and other model cells for recombinant expression of human connexins have different and significant limitations.
View Article and Find Full Text PDFConnexins are channel-forming proteins that function to facilitate gap junctional intercellular communication. Here, we use dual cell voltage clamp and dye transfer studies to corroborate past findings showing that Cx31.1 (encoded by GJB5) is defective in gap junction channel formation, illustrating that Cx31.
View Article and Find Full Text PDFThe human lens is an avascular organ, and its transparency is dependent on gap junction (GJ)-mediated microcirculation. Lens GJs are composed of three connexins with Cx46 and Cx50 being expressed in lens fiber cells and Cx43 and Cx50 in the epithelial cells. Impairment of GJ communication by either Cx46 or Cx50 mutations has been shown to be one of the main molecular mechanisms of congenital cataracts in mutant carrier families.
View Article and Find Full Text PDF