Studies to assess the risks of revealing chemical structures by sharing various chemical descriptor data are presented. Descriptors examined include "Lipinski-like" properties, 2D-BCUT descriptors, and a high-dimensional "fingerprint-like" descriptor (MACCs-vector). We demonstrate that unless sufficient precautions are taken, de novo design software such as EA-Inventor is able to derive a unique chemical structure or a set of closely related analogs from some commonly used descriptors.
View Article and Find Full Text PDFA novel, semiempirical approach for the general treatment of solute-solvent interactions (GSSI) was developed to enable the prediction of solution-phase properties (e.g., free energies of desolvation, partition coefficients, and membrane permeabilities).
View Article and Find Full Text PDFA significant number of atoms lie buried beneath the "molecular surface" of proteins and other biologic macromolecules. Interactions between ligands and these macromolecules are dominated by interactions with the "surface atoms". Although interactions with the "buried" or interior atoms of the macromolecule certainly contribute to the total intermolecular interaction energy, many computer-assisted drug design (CADD) strategies can benefit from the identification of those atoms "on the surface" of proteins and other macromolecules.
View Article and Find Full Text PDF