Publications by authors named "Robert S Papay"

α-Adrenergic Receptors (ARs) regulate the sympathetic nervous system by the binding of norepinephrine (NE) and epinephrine (Epi) through different subtypes (α, α, α). α-AR activation is hypothesized to be memory forming and cognitive enhancing but drug development has been stagnant due to unwanted side effects on blood pressure. We recently reported the pharmacological characterization of the first positive allosteric modulator (PAM) for the α-AR with predictive pro-cognitive and memory properties.

View Article and Find Full Text PDF
Article Synopsis
  • α-Adrenergic Receptors (ARs) are G-protein coupled receptors that play a key role in regulating the sympathetic nervous system, but drug development for these receptors is challenging due to issues with blood pressure.
  • The study introduces Cmpd-3, a newly developed positive allosteric modulator (PAM) of α-ARs, which binds effectively to ARs and enhances norepinephrine's effects without acting like a traditional agonist that raises blood pressure.
  • Cmpd-3 is unique in its ability to selectively enhance receptor signaling at low concentrations, promising better therapeutic options for various diseases without the side effects often associated with existing drugs targeting α-ARs.
View Article and Find Full Text PDF

The role of catecholamine receptors in cardiac energy metabolism is unknown. α-adrenergic receptors (α-ARs) have been identified to play a role in whole body metabolism but its role in cardiac energy metabolism has not been explored. We used freshly prepared primary adult mouse cardiomyocytes and incubated with either C-palmitate or C-glucose tracers to measure oxidation rates in the presence or absence of phenylephrine, an α-AR agonist (with β and α-AR blockers) under normal cell culture conditions.

View Article and Find Full Text PDF

The role of α-adrenergic receptors (α-ARs) and their subtypes in metabolism is not well known. Most previous studies were performed before the advent of transgenic mouse models and utilized transformed cell lines and poorly selective antagonists. We have now studied the metabolic regulation of the α- and α-AR subtypes in vivo using knock-out (KO) and transgenic mice that express a constitutively active mutant (CAM) form of the receptor, assessing subtype-selective functions.

View Article and Find Full Text PDF

While α(1)-adrenergic receptors (ARs) have been previously shown to limit ischemic cardiac damage, the mechanisms remain unclear. Most previous studies utilized low oxygen conditions in addition to ischemic buffers with glucose deficiencies, but we discovered profound differences if the two conditions are separated. We assessed both mouse neonatal and adult myocytes and HL-1 cells in a series of assays assessing ischemic damage under hypoxic or low glucose conditions.

View Article and Find Full Text PDF

The α1-adrenergic receptor (α1AR) subtypes, α1AAR and α1BAR, have differential effects in the heart and central nervous system. Long-term stimulation of the α1AAR subtype prolongs lifespan and provides cardio- and neuro-protective effects. We examined the lifespan of constitutively active mutant (CAM)-α1BAR mice and the incidence of cancer in mice expressing the CAM form of either the α1AAR (CAM-α1AAR mice) or α1BAR.

View Article and Find Full Text PDF

The role of α₁-adrenergic receptors (ARs) in the regulation of cardiac hypertrophy is still unclear, because transgenic mice demonstrated hypertrophy or the lack of it despite high receptor overexpression. To further address the role of the α₁-ARs in cardiac hypertrophy, we analyzed unique transgenic mice that overexpress constitutively active mutation (CAM) α₁A-ARs or CAM α₁B-ARs under the regulation of large fragments of their native promoters. These constitutively active receptors are expressed in all tissues that endogenously express their wild-type counterparts as opposed to only myocyte-targeted transgenic mice.

View Article and Find Full Text PDF

Previous studies demonstrated α₁-adrenergic receptors (ARs) increase STAT3 activation in transfected and non-cardiac primary cell lines. However, the mechanism used by α₁-ARs resulting in STAT3 activation is unknown. While other G-protein-coupled receptors (GPCRs) can couple to STAT3, these mechanisms demonstrate coupling through SRC, TYK, Rac, or complex formation with Gq and used only transfected cell lines.

View Article and Find Full Text PDF

The role of α(1)-adrenergic receptors (α(1)ARs) in cognition and mood is controversial, probably as a result of past use of nonselective agents. α(1A)AR activation was recently shown to increase neurogenesis, which is linked to cognition and mood. We studied the effects of long-term α(1A)AR stimulation using transgenic mice engineered to express a constitutively active mutant (CAM) form of the α(1A)AR.

View Article and Find Full Text PDF

The understanding of the function of alpha(1)-adrenergic receptors in the brain has been limited due to a lack of specific ligands and antibodies. We circumvented this problem by using transgenic mice engineered to overexpress either wild-type receptor tagged with enhanced green fluorescent protein or constitutively active mutant alpha(1)-adrenergic receptor subtypes in tissues in which they are normally expressed. We identified intriguing alpha(1A)-adrenergic receptor subtype-expressing cells with a migratory morphology in the adult subventricular zone that coexpressed markers of neural stem cell and/or progenitors.

View Article and Find Full Text PDF

Our previous studies have demonstrated that activation of alpha(1)-adrenergic receptors (ARs) increased interleukin-6 (IL-6) mRNA expression and protein secretion, which is probably an important yet unknown mechanism contributing to the regulation of cardiac function. Using Rat-1 fibroblasts stably transfected with the alpha(1A)-AR subtype and primary mouse neonatal cardiomyocytes, we elucidated the basic molecular mechanisms responsible for the alpha(1)-AR modulation of IL-6 expression. IL-6 mRNA production mediated by alpha(1)-AR peaked at 1 to 2 h.

View Article and Find Full Text PDF

Adrenergic receptors (ARs) play an important role in the regulation of cardiac function. Cardiac inotropy is primarily regulated by beta(1)-ARs. However, alpha(1)-ARs may play an important role in inotropy during heart failure.

View Article and Find Full Text PDF

Objective: Brief periods of ischemia stimulate an endogenous mechanism in the heart that protects the myocardium from subsequent ischemic injury. alpha1-Adrenergic receptors (ARs) have been implicated in this process. However, the lack of sufficiently selective antagonists has made it difficult to determine which alpha1-AR subtype protects the heart from ischemic injury.

View Article and Find Full Text PDF

The alpha1-adrenergic receptors (alpha1ARs) play an important role in mediating sympathetic neurotransmission in peripheral organ systems; however, central alpha1ARs are not well characterized. Additionally, due to the lack of sufficiently subtype-selective drugs or high avidity antibodies, the contribution of each alpha1AR subtype to various central functions is currently unclear. Transcription regulation through alpha1AR subtypes in the CNS is also unknown.

View Article and Find Full Text PDF

Alpha(1)-adrenoceptor subtypes (alpha(1A)-, alpha(1B)-, alpha(1D)-) are known to couple to similar signaling pathways, although differences among the subtypes do exist. As a more sensitive assay, we used oligonucleotide microarrays to identify gene expression changes in Rat-1 fibroblasts stably expressing each individual subtype. We report the gene expressions that change by at least a factor of 2 or more.

View Article and Find Full Text PDF

Prostaglandins are autacoids that elevate intracellular 3prime prime or minute:5prime prime or minute-cyclic adenosine monophosphate (cAMP) levels in chondrocytes and other cells in culture. To facilitate intracellular cAMP accumulation, bovine chondrocytes were incubated with forskolin alone or forskolin and isobutylmethylxanthine. Both significantly increased proteoglycan synthesis, which was inhibited by the cAMP-dependent protein kinase inhibitor H89.

View Article and Find Full Text PDF