N-Nitrosamines are a class of indirect acting mutagens, as their metabolic degradation leads to the formation of the DNA-alkylating diazonium ion. Following up on the in-silico identification of thousands of nitrosamines that can potentially be derived from small molecule drugs and their known impurities described in a previous publication, we have now re-analyzed this dataset to apply EMA's Carcinogenic Potency Categorization Approach (CPCA) introduced with the 16th revision of their Q&A document for Marketing Authorization Holders. We find that the majority of potential nitrosamines from secondary amine precursors belongs to potency categories 4 and 5, corresponding to an acceptable daily intake of 1500 ng, whereas nitrosamines from tertiary amine precursors distribute more evenly among all categories, resulting in a substantial number of structures that are assigned the more challenging acceptable intakes of 18 ng/day and 100 ng/day for potency categories 1 and 2, respectively.
View Article and Find Full Text PDFExpert review of two predictions, made by complementary (quantitative) structure-activity relationship models, to an overall conclusion is a key component of using in silico tools to assess the mutagenic potential of impurities as part of the ICH M7 guideline. In lieu of a specified protocol, numerous publications have presented best practise guides, often indicating the occurrence of common prediction scenarios and the evidence required to resolve them. A semi-automated expert review tool has been implemented in Lhasa Limited's Nexus platform following collation of these common arguments and assignment to the associated prediction scenarios made by Derek Nexus and Sarah Nexus.
View Article and Find Full Text PDFThe Dermal Sensitisation Thresholds (DST) are Thresholds of Toxicological Concern, which can be used to justify exposure-based waiving when conducting a skin sensitisation risk assessment. This study aimed to update the published DST values by expanding the size of the Local Lymph Node Assay dataset upon which they are based, whilst assigning chemical reactivity using an in silico expert system (Derek Nexus). The potency values within the expanded dataset fitted a similar gamma distribution to that observed for the original dataset.
View Article and Find Full Text PDFThe traditional paradigm for safety assessment of chemicals for their carcinogenic potential to humans relies heavily on a battery of well-established genotoxicity tests, usually followed up by long-term, high-dose rodent studies. There are a variety of problems with this approach, not least that the rodent may not always be the best model to predict toxicity in humans. Consequently, new approach methodologies (NAMs) are being developed to replace or enhance predictions coming from the existing assays.
View Article and Find Full Text PDFLhasa Limited have had a role in the in silico prediction of drug and other chemical toxicity for over 30 years. This role has always been multifaceted, both as a provider of predictive software such as Derek Nexus, and as an honest broker for the sharing of proprietary chemical and toxicity data. A changing regulatory environment and the drive for the Replacement, Reduction and Refinement (the 3Rs) of animal testing have led both to increased acceptance of in silico predictions and a desire for the sharing of data to reduce duplicate testing.
View Article and Find Full Text PDFThe use of in silico predictions for the assessment of bacterial mutagenicity under the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) M7 guideline is recommended when two complementary (quantitative) structure-activity relationship (Q)SAR models are used. Using two systems may increase the sensitivity and accuracy of predictions but also increases the need to review predictions, particularly in situations where results disagree. During the 4th ICH M7/QSAR Workshop held during the Joint Meeting of the 6th Asian Congress on Environmental Mutagens (ACEM) and the 48th Annual Meeting of the Japanese Environmental Mutagen Society (JEMS) 2019, speakers demonstrated their approaches to expert review using 20 compounds provided ahead of the workshop that were expected to yield ambiguous (Q)SAR results.
View Article and Find Full Text PDFCu salts have been found to promote the cycloaddition reaction of sydnones and terminal alkynes, providing significant reduction in reaction times. Specifically, the use of Cu(OTf)2 is found to provide 1,3-disubstituted pyrazoles, whereas simply switching the promoter system to Cu(OAc)2 allows the corresponding 1,4-isomers to be produced. The mechanism of the Cu-effect in each case has been investigated by experimental and theoretical studies, and they suggest that Cu(OTf)2 functions by Lewis acid activation of the sydnone, whereas Cu(OAc)2 promotes formation of reactive Cu(I) acetylides.
View Article and Find Full Text PDFWe report the synthesis and some structural studies of 4-trifluoromethyl, 4-difluoromethyl-, and 4-monofluoromethylsydnones. All but the latter compounds are stable and represent effective precursors to a range of pyrazoles after cycloaddition reactions with alkynes. The cycloadditions are generally highly regioselective and provide 5-fluoromethylpyrazole products, although we have observed that Bn-substituted sydnones can provide an unexpected alkyne insertion mode that generates the 3-fluoromethyl isomer.
View Article and Find Full Text PDFTwo synthetic approaches to 4-trifluoromethylsydnones, a novel class of these mesoionic reagents, are reported. These compounds undergo regioselective alkyne cycloaddition reactions, thereby providing a general approach to 5-trifluoromethylpyrazoles. This method has been employed in a short formal synthesis of the herbicide fluazolate.
View Article and Find Full Text PDFA concise synthesis of three members of the withasomnine family of natural products is reported. The synthesis features a regioselective sydnone-alkynylboronate cycloaddition followed by Suzuki cross coupling and silyl group removal, and marks the first divergent approach to this family of pyrazole based natural products.
View Article and Find Full Text PDF