RNAi and repression play evolutionarily conserved and often coordinated roles in transcriptional silencing. Here, we show that, in the protozoan , germline-specific internally eliminated sequences (IESs)-many related to transposable elements (TEs)-become transcriptionally activated in mutants deficient in the RNAi-dependent repression pathway. Germline TE mobilization also dramatically increases in these mutants.
View Article and Find Full Text PDFThe amazing regenerative abilities of the giant ciliate Stentor coeruleus made it a favorite subject for classical embryologists. Now, its genome has been sequenced, enabling renewed experimental study and revealing unexpected surprises in mRNA splicing and the genetic code.
View Article and Find Full Text PDFThe germline genome of the binucleated ciliate undergoes programmed chromosome breakage and massive DNA elimination to generate the somatic genome. Here, we present a complete sequence assembly of the germline genome and analyze multiple features of its structure and its relationship to the somatic genome, shedding light on the mechanisms of genome rearrangement as well as the evolutionary history of this remarkable germline/soma differentiation. Our results strengthen the notion that a complex, dynamic, and ongoing interplay between mobile DNA elements and the host genome have shaped chromosome structure, locally and globally.
View Article and Find Full Text PDFUbc9p is the sole E2-conjugating enzyme for SUMOylation, and its proper function is required for regulating key nuclear events such as transcription, DNA repair, and mitosis. In Tetrahymena thermophila, the genome is separated into a diploid germ line micronucleus (MIC) that divides by mitosis and a polyploid somatic macronucleus (MAC) that divides amitotically. This unusual nuclear organization provides novel opportunities for the study of SUMOylation and Ubc9p function.
View Article and Find Full Text PDFWithin the past decade, genomic studies have emerged as essential and highly productive tools to explore the biology of Tetrahymena thermophila. The current major resources, which have been extensively mined by the research community, are the annotated macronuclear genome assembly, transcriptomic data and the databases that house this information. Efforts in progress will soon improve these data sources and expand their scope, including providing annotated micronuclear and comparative genomic sequences.
View Article and Find Full Text PDFGenetically programmed DNA rearrangements can regulate mRNA expression at an individual locus or, for some organisms, on a genome-wide scale. Ciliates rely on a remarkable process of whole-genome remodeling by DNA elimination to differentiate an expressed macronucleus (MAC) from a copy of the germline micronucleus (MIC) in each cycle of sexual reproduction. Here we describe results from the first high-throughput sequencing effort to investigate ciliate genome restructuring, comparing Sanger long-read sequences from a Tetrahymena thermophila MIC genome library to the MAC genome assembly.
View Article and Find Full Text PDFGenomes, like crazy patchwork quilts, are stitched together over evolutionary time from diverse elements, including some unwelcome invaders. To deal with parasitic mobile elements, most eukaryotes employ a genome self-defensive manoeuvre to recognise and silence such elements by homology-dependent interactions with RNA-protein complexes that alter chromatin. Ciliated protozoa employ more 'offensive' tactics by actually unstitching and reassembling their somatic genomes at every sexual generation to eliminate transposons and their remnants, using as patterns the maternal genomes that were rearranged in the previous cycle.
View Article and Find Full Text PDFBackground: Ichthyophthirius multifiliis, commonly known as Ich, is a highly pathogenic ciliate responsible for 'white spot', a disease causing significant economic losses to the global aquaculture industry. Options for disease control are extremely limited, and Ich's obligate parasitic lifestyle makes experimental studies challenging. Unlike most well-studied protozoan parasites, Ich belongs to a phylum composed primarily of free-living members.
View Article and Find Full Text PDFBackground: Tetrahymena thermophila, a widely studied model for cellular and molecular biology, is a binucleated single-celled organism with a germline micronucleus (MIC) and somatic macronucleus (MAC). The recent draft MAC genome assembly revealed low sequence repetitiveness, a result of the epigenetic removal of invasive DNA elements found only in the MIC genome. Such low repetitiveness makes complete closure of the MAC genome a feasible goal, which to achieve would require standard closure methods as well as removal of minor MIC contamination of the MAC genome assembly.
View Article and Find Full Text PDFExtensive DNA rearrangements occur during the differentiation of the developing somatic macronuclear genome from the germ line micronuclear genome of Tetrahymena thermophila. To identify genes encoding proteins likely to be involved in this process, we devised a cytological screen to find proteins that specifically localize in macronuclear anlagen (Lia proteins) at the stage when rearrangements occur. We compared the localization of these with that of the chromodomain protein, Pdd1p, which is the most abundant known participant in this genome reorganization.
View Article and Find Full Text PDFThe ciliate Tetrahymena thermophila is a model organism for molecular and cellular biology. Like other ciliates, this species has separate germline and soma functions that are embodied by distinct nuclei within a single cell. The germline-like micronucleus (MIC) has its genome held in reserve for sexual reproduction.
View Article and Find Full Text PDFThe macronucleus of the binucleate ciliate Tetrahymena thermophila contains fragmented and amplified chromosomes that do not have centromeres, eliminating the possibility of mitotic nuclear division. Instead, the macronucleus divides by amitosis with random segregation of these chromosomes without detectable chromatin condensation. This amitotic division provides a special opportunity for studying the roles of mitotic proteins in segregating acentric chromatin.
View Article and Find Full Text PDFGermline mutations that inactivate the tumor suppressor gene BRCA1 are associated with an increased risk of cancers of the breast and other tissues, but the functional consequence of many missense variants found in the human population is uncertain. Several predictive methods have been proposed to distinguish cancer-predisposing missense mutations from harmless polymorphisms, including a small colony phenotype (SCP) assay performed in the model organism, yeast (Saccharomyces cerevisiae). The goal of this study was to further evaluate this colony size assay.
View Article and Find Full Text PDFHistone H3 lysine 9 methylation [Me(Lys9)H3] is an epigenetic mark for heterochromatin-dependent gene silencing, mediated by direct binding to chromodomain-containing proteins such as Heterochromatin Protein 1. In the ciliate Tetrahymena, two chromodomain proteins, Pdd1p and Pdd3p, are involved in the massive programmed DNA elimination that accompanies macronuclear development. We report that both proteins bind H3(Lys9)Me in vitro.
View Article and Find Full Text PDF