Publications by authors named "Robert S Allison"

During locomotion, the visual system can factor out the motion component caused by observer locomotion from the complex target flow vector to obtain the world-relative target motion. This process, which has been termed flow parsing, is known to be incomplete, but viewing with both eyes could potentially aid in this task. Binocular disparity and binocular summation could both improve performance when viewing with both eyes.

View Article and Find Full Text PDF

Altering posture relative to the direction of gravity, or exposure to microgravity has been shown to affect many aspects of perception, including size perception. Our aims in this study were to investigate whether changes in posture and long-term exposure to microgravity bias the visual perception of object height and to test whether any such biases are accompanied by changes in precision. We also explored the possibility of sex/gender differences.

View Article and Find Full Text PDF

Self-motion perception is a multi-sensory process that involves visual, vestibular, and other cues. When perception of self-motion is induced using only visual motion, vestibular cues indicate that the body remains stationary, which may bias an observer's perception. When lowering the precision of the vestibular cue by for example, lying down or by adapting to microgravity, these biases may decrease, accompanied by a decrease in precision.

View Article and Find Full Text PDF

Occlusion, or interposition, is one of the strongest and best-known pictorial cues to depth. Furthermore, the successive occlusions of previous objects by newly presented objects produces an impression of increasing depth. Although the perceived motion associated with this illusion has been studied, the depth percept has not.

View Article and Find Full Text PDF

Neutral buoyancy has been used as an analog for microgravity from the earliest days of human spaceflight. Compared to other options on Earth, neutral buoyancy is relatively inexpensive and presents little danger to astronauts while simulating some aspects of microgravity. Neutral buoyancy removes somatosensory cues to the direction of gravity but leaves vestibular cues intact.

View Article and Find Full Text PDF

During head-mounted display (HMD)-based virtual reality (VR), head movements and motion-to-photon-based display lag generate differences in our virtual and physical head pose (referred to as DVP). We propose that large-amplitude, time-varying patterns of DVP serve as the primary trigger for cybersickness under such conditions. We test this hypothesis by measuring the sickness and estimating the DVP experienced under different levels of experimentally imposed display lag (ranging from 0 to 222 ms on top of the VR system's ~ 4 ms baseline lag).

View Article and Find Full Text PDF

Stereoscopic AR and VR headsets have displays and lenses that are either fixed or adjustable to match a limited range of user inter-pupillary distances (IPDs). Projective geometry predicts a misperception of depth when either the displays or virtual cameras used to render images are misaligned with the eyes. However, misalignment between the eyes and lenses might also affect binocular convergence, which could further distort perceived depth.

View Article and Find Full Text PDF

Determining the relief of upcoming terrain is critical to locomotion over rough or uneven ground. Given the significant contribution of stereopsis to perceived surface shape, it should play a crucial role in determining the shape of ground surfaces. The aim of this series of experiments was to evaluate the relative contribution of monocular and binocular depth cues to judgments of ground relief.

View Article and Find Full Text PDF

Mastery of fire is intimately linked to advances in human civilization, culture and technology [...

View Article and Find Full Text PDF

To calibrate stereoscopic depth from disparity our visual system must compensate for an object's egocentric location. Ideally, the perceived three-dimensional shape and size of objects in visual space should be invariant with their location such that rigid objects have a consistent identity and shape. These percepts should be accurate enough to support both perceptual judgments and visually-guided interaction.

View Article and Find Full Text PDF

An internal model of self-motion provides a fundamental basis for action in our daily lives, yet little is known about its development. The ability to control self-motion develops in youth and often deteriorates with advanced age. Self-motion generates relative motion between the viewer and the environment.

View Article and Find Full Text PDF

Advances in Virtual Reality technology have enabled physical walking in virtual environments. While most Virtual Reality systems render stereoscopic images to users, the implication of binocular viewing with respect to the performance of human walking in virtual environments remains largely unknown. In the present study, we conducted two walking experiments in virtual environments using a linear treadmill and a novel projected display known as the Wide Immersive Stereo Environment (WISE) to study the role of binocular viewing in virtual locomotion.

View Article and Find Full Text PDF

Research has shown that consistent stereoscopic information improves the vection (i.e. illusions of self-motion) induced in stationary observers.

View Article and Find Full Text PDF

When the head is tilted, an objectively vertical line viewed in isolation is typically perceived as tilted. We explored whether this shift also occurs when viewing global motion displays perceived as either object-motion or self-motion. Observers stood and lay left side down while viewing (1) a static line, (2) a random-dot display of 2-D (planar) motion or (3) a random-dot display of 3-D (volumetric) global motion.

View Article and Find Full Text PDF

Objective: We examined the contribution of binocular vision and experience to performance on a simulated helicopter flight task.

Background: Although there is a long history of research on the role of binocular vision and stereopsis in aviation, there is no consensus on its operational relevance. This work addresses this using a naturalistic task in a virtual environment.

View Article and Find Full Text PDF

In a series of studies using physical targets, we examined the effect of lateral retinal motion on stereoscopic depth discrimination thresholds. We briefly presented thin vertical lines, along with a fixation marker, at speeds ranging from 0 to 16 deg·s. Previous investigations of the effect of retinal motion on stereoacuity consistently show that there is little impact of retinal motion up to 2 deg·s, however, thresholds appear to rise steeply at higher velocities (greater than 3 deg·s).

View Article and Find Full Text PDF

Recent studies have confirmed that monovision treatment degrades stereopsis but it is not clear if these effects are limited to fine disparity processing, or how they are affected by viewing distance or age. Given the link between stereopsis and postural stability, it is important that we have full understanding of the impact of monovision on binocular function. In this study we assessed the short-term effects of optically induced monovision on a depth-discrimination task for young and older (presbyopic) adults.

View Article and Find Full Text PDF

We examined the effect of the smoothness of motion on vection strength. The smoothness of stimulus motion was modulated by varying the number of frames comprising the movement. In this study, a horizontal grating translated through 360° of phase in 1 s divided into steps of 3, 4, 6, 12, 20, 30, or 60 frames.

View Article and Find Full Text PDF

For decades detection and monitoring of forest and other wildland fires has relied heavily on aircraft (and satellites). Technical advances and improved affordability of both sensors and sensor platforms promise to revolutionize the way aircraft detect, monitor and help suppress wildfires. Sensor systems like hyperspectral cameras, image intensifiers and thermal cameras that have previously been limited in use due to cost or technology considerations are now becoming widely available and affordable.

View Article and Find Full Text PDF

Interchanging the left and right eye views of a scene (pseudoscopic viewing) has been reported to produce vivid stereoscopic effects under certain conditions. In two separate field studies, we examined the experiences of 124 observers (76 in Study 1 and 48 in Study 2) while pseudoscopically viewing a distant natural outdoor scene. We found large individual differences in both the nature and the timing of their pseudoscopic experiences.

View Article and Find Full Text PDF

Both the upper and lower disparity limits for stereopsis vary with the size of the targets. Recently, Tsirlin, Wilcox, and Allison (2012) suggested that perceived depth magnitude from stereopsis might also depend on the vertical extent of a stimulus. To test this hypothesis we compared apparent depth in small discs to depth in long bars with equivalent width and disparity.

View Article and Find Full Text PDF

Patients with concussions, strokes and neuromuscular disease such as Parkinson's disease, often have difficulties in keeping balance and suffer from abnormal gaits. Gait assessment conducted by a physician or therapist in clinics is standard clinical practice for assessing such injuries. However, this approach is subjective, leading to potential problems of unrepeatability, poor sensitivity and unreliability.

View Article and Find Full Text PDF

This paper discusses four major challenges facing modern vection research. Challenge 1 (Defining Vection) outlines the different ways that vection has been defined in the literature and discusses their theoretical and experimental ramifications. The term vection is most often used to refer to visual illusions of self-motion induced in stationary observers (by moving, or simulating the motion of, the surrounding environment).

View Article and Find Full Text PDF

Visual-vestibular conflicts have been traditionally used to explain both perceptions of self-motion and experiences of motion sickness. However, sensory conflict theories have been challenged by findings that adding simulated viewpoint jitter to inducing displays enhances (rather than reduces or destroys) visual illusions of self-motion experienced by stationary observers. One possible explanation of this jitter advantage for vection is that jittering optic flows are more ecological than smooth displays.

View Article and Find Full Text PDF

In binocular vision, occlusion of one object by another gives rise to monocular occlusions—regions visible only in one eye. Although binocular disparities cannot be computed for these regions, monocular occlusions can be precisely localized in depth and can induce the perception of illusory occluding surfaces. The phenomenon of depth perception from monocular occlusions, known as da Vinci stereopsis, is intriguing, but its mechanisms are not well understood.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionghke4iur6i0u5npckt5io23csnp4jujv): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once