Publications by authors named "Robert S Adelstein"

Mutations in non-muscle myosin 2A (NM2A) encompass a wide spectrum of anomalies collectively known as MYH9-Related Disease (MYH9-RD) in humans that can include macrothrombocytopenia, glomerulosclerosis, deafness, and cataracts. We previously created mouse models of the three mutations most frequently found in humans: R702C, D1424N, and E1841K. While homozygous R702C and D1424N mutations are embryonic lethal, we found homozygous mutant E1841K mice to be viable.

View Article and Find Full Text PDF

Among the three nonmuscle myosin 2 (NM2) paralogs, NM 2A and 2B, but not 2C, are detected in endothelial cells. To study the role of NM2 in vascular formation, we ablate NM2 in endothelial cells in mice. Ablating NM2A, but not NM2B, results in reduced blood vessel coverage and increased vascular branching in the developing mouse skin and coronary vasculature.

View Article and Find Full Text PDF

The generation of genetically modified mouse models derived from gene targeting (GT) in mouse embryonic stem (ES) cells (mESCs) has greatly advanced both basic and clinical research. Our previous finding that gene targeting at the Myh9 exon2 site in mESCs has a pronounced high homologous recombination (HR) efficiency (>90%) has facilitated the generation of a series of nonmuscle myosin II (NM II) related mouse models. Furthermore, the Myh9 gene locus has been well demonstrated to be a new safe harbor for site-specific insertion of other exogenous genes.

View Article and Find Full Text PDF

Contact guidance refers to the ability of cells to sense the geometrical features of the microenvironment and respond by changing their shape and adopting the appropriate orientation. Inhibition and ablation of nonmuscle myosin 2 (NM2) paralogues have demonstrated their importance for contact guidance. However, the specific roles of the NM2 paralogues have not been systematically studied.

View Article and Find Full Text PDF

The morphogenesis of mammalian embryonic external genitalia (eExG) shows dynamic differences between males and females. In genotypic males, eExG are masculinized in response to androgen signaling. Disruption of this process can give rise to multiple male reproductive organ defects.

View Article and Find Full Text PDF

Impaired alveolar formation and maintenance are features of many pulmonary diseases that are associated with significant morbidity and mortality. In a forward genetic screen for modulators of mouse lung development, we identified the non-muscle myosin II heavy chain gene, Myh10. Myh10 mutant pups exhibit cyanosis and respiratory distress, and die shortly after birth from differentiation defects in alveolar epithelium and mesenchyme.

View Article and Find Full Text PDF

Three paralogues of nonmuscle myosin 2 (NM 2A, 2B, and 2C) are expressed in mammals, and the heavy chains are the products of three different genes (Myh9, Myh10, and Myh14, respectively). NM 2A and 2B are essential for mouse development, while 2C is not. Studies on NM 2C are limited and the in vivo function of this paralogue is not clear.

View Article and Find Full Text PDF

The MYH9 gene encodes the heavy chain of non-muscle myosin IIA, a widely expressed cytoplasmic myosin that participates in a variety of processes requiring the generation of intracellular chemomechanical force and translocation of the actin cytoskeleton. Non-muscle myosin IIA functions are regulated by phosphorylation of its 20 kDa light chain, of the heavy chain, and by interactions with other proteins. Variants of MYH9 cause an autosomal-dominant disorder, termed MYH9-related disease, and may be involved in other conditions, such as chronic kidney disease, non-syndromic deafness, and cancer.

View Article and Find Full Text PDF

Many actin filaments in animal cells are co-polymers of actin and tropomyosin. In many cases, non-muscle myosin II associates with these co-polymers to establish a contractile network. However, the temporal relationship of these three proteins in the assembly of actin filaments is not known.

View Article and Find Full Text PDF

Targeted integration of exogenous genes into so-called safe harbors/friend sites, offers the advantages of expressing normal levels of target genes and preventing potentially adverse effects on endogenous genes. However, the ideal genomic loci for this purpose remain limited. Additionally, due to the inherent and unresolved issues with the current genome editing tools, traditional embryonic stem (ES) cell-based targeted transgenesis technology is still preferred in practical applications.

View Article and Find Full Text PDF

Rbfox RNA-binding proteins play important roles in the regulation of alternative pre-mRNA splicing, but their role in other gene regulatory mechanisms is not well understood. Here, we show that Rbfox2 is a novel constituent of cytoplasmic stress granules, the translational silencing machinery assembled in response to cellular stress. We also show that the RNA binding activity of the Rbfox family protein is crucial for its localization into stress granules.

View Article and Find Full Text PDF

Nonmuscle myosin IIB (NMIIB; heavy chain encoded by ) is essential for cardiac myocyte cytokinesis. The role of NMIIB in other cardiac cells is not known. Here, we show that NMIIB is required in epicardial formation and functions to support myocardial proliferation and coronary vessel development.

View Article and Find Full Text PDF

Membrane remodeling plays a fundamental role during a variety of biological events. However, the dynamics and the molecular mechanisms regulating this process within cells in mammalian tissues in situ remain largely unknown. In this study, we use intravital subcellular microscopy in live mice to study the role of the actomyosin cytoskeleton in driving the remodeling of membranes of large secretory granules, which are integrated into the plasma membrane during regulated exocytosis.

View Article and Find Full Text PDF

In kidney development, connection of the nephric duct (ND) to the cloaca and subsequent sprouting of the ureteric bud (UB) from the ND are important for urinary exit tract formation. Although the roles of Ret signaling are well established, it remains unclear how intracellular cytoskeletal proteins regulate these morphogenetic processes. Myh9 and Myh10 encode two different non-muscle myosin II heavy chains, and Myh9 mutations in humans are implicated in congenital kidney diseases.

View Article and Find Full Text PDF

The cellular mechanisms governing non-muscle myosin II (NM2) filament assembly are largely unknown. Using EGFP-NM2A knock-in fibroblasts and multiple super-resolution imaging modalities, we characterized and quantified the sequential amplification of NM2 filaments within lamellae, wherein filaments emanating from single nucleation events continuously partition, forming filament clusters that populate large-scale actomyosin structures deeper in the cell. Individual partitioning events coincide spatially and temporally with the movements of diverging actin fibres, suppression of which inhibits partitioning.

View Article and Find Full Text PDF

The role of nonmuscle myosin 2 (NM2) pulsatile dynamics in generating contractile forces required for developmental morphogenesis has been characterized, but whether these pulsatile contractions are an intrinsic property of all actomyosin networks is not known. Here we used live-cell fluorescence imaging to show that transient, local assembly of NM2A "pulses" occurs in the cortical cytoskeleton of single adherent cells of mesenchymal, epithelial, and sarcoma origin, independent of developmental signaling cues and cell-cell or cell-ECM interactions. We show that pulses in the cortical cytoskeleton require Rho-associated kinase- or myosin light chain kinase (MLCK) activity, increases in cytosolic calcium, and NM2 ATPase activity.

View Article and Find Full Text PDF

The actin cytoskeleton is a critical regulator of intestinal mucosal barrier permeability, and the integrity of epithelial adherens junctions (AJ) and tight junctions (TJ). Non muscle myosin II (NM II) is a key cytoskeletal motor that controls actin filament architecture and dynamics. While NM II has been implicated in the regulation of epithelial junctions in vitro, little is known about its roles in the intestinal mucosa in vivo.

View Article and Find Full Text PDF

Limb body wall complex (LBWC) and amniotic band sequence (ABS) are multiple congenital anomaly conditions with craniofacial, limb, and ventral wall defects. LBWC and ABS are considered separate entities by some, and a continuum of severity of the same condition by others. The etiology of LBWC/ABS remains unknown and multiple hypotheses have been proposed.

View Article and Find Full Text PDF

To investigate the contribution of nonmuscle myosin II-A (NM II-A) to early cardiac development we crossed Myh9 floxed mice and Nkx2.5 cre-recombinase mice. Nkx2.

View Article and Find Full Text PDF

Unlabelled: Keratins, among other cytoskeletal intermediate filament proteins, are mutated at a highly conserved arginine with consequent severe disease phenotypes due to disruption of keratin filament organization. We screened a kinase inhibitor library, using A549 cells that are transduced with a lentivirus keratin 18 (K18) construct, to identify compounds that normalize filament disruption due to K18 Arg90Cys mutation at the conserved arginine. High-throughput screening showed that PKC412, a multikinase inhibitor, ameliorated K18 Arg90Cys-mediated keratin filament disruption in cells and in the livers of previously described transgenic mice that overexpress K18 Arg90Cys.

View Article and Find Full Text PDF

The immune response relies on the migration of leukocytes and on their ability to stop in precise anatomical locations to fulfil their task. How leukocyte migration and function are coordinated is unknown. Here we show that in immature dendritic cells, which patrol their environment by engulfing extracellular material, cell migration and antigen capture are antagonistic.

View Article and Find Full Text PDF

In many cases, cell function is intimately linked to cell shape control. We used endothelial cell branching morphogenesis as a model to understand the role of myosin II in shape control of invasive cells migrating in 3D collagen gels. We applied principles of differential geometry and mathematical morphology to 3D image sets to parameterize cell branch structure and local cell-surface curvature.

View Article and Find Full Text PDF

RNA-binding proteins (RBPs) regulate numerous aspects of gene expression; thus, identification of their endogenous targets is important for understanding their cellular functions. Here we identified transcriptome-wide targets of Rbfox3 in neuronally differentiated P19 cells and mouse brain by using photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation (PAR-CLIP). Although Rbfox3 is known to regulate pre-mRNA splicing through binding the UGCAUG motif, PAR-CLIP analysis revealed diverse Rbfox3 targets including primary microRNAs (pri-miRNAs) that lack the UGCAUG motif.

View Article and Find Full Text PDF

The kidney develops from reciprocal interactions between the metanephric mesenchyme and ureteric bud. The mesenchyme transforms into epithelia and forms complicated nephron structures, whereas the ureteric bud extends its pre-existing epithelial ducts. Although the roles are well established for extracellular stimuli, such as Wnt and Notch, it is unclear how the intracellular cytoskeleton regulates these morphogenetic processes.

View Article and Find Full Text PDF