Publications by authors named "Robert Root-Bernstein"

Recent research suggests that T-cell receptor (TCR) sequences expanded during human immunodeficiency virus and SARS-CoV-2 infections unexpectedly mimic these viruses. The hypothesis tested here is that TCR sequences expanded in patients with type 1 diabetes mellitus (T1DM) and autoimmune myocarditis (AM) mimic the infectious triggers of these diseases. Indeed, TCR sequences mimicking coxsackieviruses, which are implicated as triggers of both diseases, are statistically significantly increased in both T1DM and AM patients.

View Article and Find Full Text PDF

A simple agent-based model is presented that produces results matching the experimental data found by Lenski's group for ≤50,000 generations of Escherichia coli bacteria under continuous selective pressure. Although various mathematical models have been devised previously to model the Lenski data, the present model has advantages in terms of overall simplicity and conceptual accessibility. The model also clearly illustrates a number of features of the evolutionary process that are otherwise not obvious, such as the roles of epistasis and historical contingency in adaptation and why evolution is time irreversible ('Dollo's law').

View Article and Find Full Text PDF
Article Synopsis
  • * The study found that SARS-CoV-2 has notable similarities to cardiac proteins, and specific bacteria also show significant similarities but to different cardiac targets, indicating a complex interaction in autoimmune responses.
  • * Results suggest that both viral and bacterial infections likely contribute to AC, highlighting the potential for vaccinations against certain bacteria and timely antibiotic use to reduce the risk of autoimmune heart issues in COVID-19 patients.
View Article and Find Full Text PDF

Some people remain healthier throughout life than others but the underlying reasons are poorly understood. Here we hypothesize this advantage is attributable in part to optimal immune resilience (IR), defined as the capacity to preserve and/or rapidly restore immune functions that promote disease resistance (immunocompetence) and control inflammation in infectious diseases as well as other causes of inflammatory stress. We gauge IR levels with two distinct peripheral blood metrics that quantify the balance between (i) CD8 and CD4 T-cell levels and (ii) gene expression signatures tracking longevity-associated immunocompetence and mortality-associated inflammation.

View Article and Find Full Text PDF

What triggers type 1 diabetes mellitus (T1DM)? One common assumption is that triggers are individual microbes that mimic autoantibody targets such as insulin (INS). However, most microbes highly associated with T1DM pathogenesis, such as coxsackieviruses (COX), lack INS mimicry and have failed to induce T1DM in animal models. Using proteomic similarity search techniques, we found that COX actually mimicked the INS receptor (INSR).

View Article and Find Full Text PDF

Neutrophilia and the production of neutrophil extracellular traps (NETs) are two of many measures of increased inflammation in severe COVID-19 that also accompany its autoimmune complications, including coagulopathies, myocarditis and multisystem inflammatory syndrome in children (MIS-C). This paper integrates currently disparate measures of innate hyperactivation in severe COVID-19 and its autoimmune complications, and relates these to SARS-CoV-2 activation of innate immunity. Aggregated data include activation of Toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD) receptors, NOD leucine-rich repeat and pyrin-domain-containing receptors (NLRPs), retinoic acid-inducible gene I (RIG-I) and melanoma-differentiation-associated gene 5 (MDA-5).

View Article and Find Full Text PDF

Published hypervariable region V-beta T cell receptor (TCR) sequences were collected from people with severe COVID-19 characterized by having various autoimmune complications, including blood coagulopathies and cardiac autoimmunity, as well as from patients diagnosed with the Kawasaki disease (KD)-like multisystem inflammatory syndrome in children (MIS-C). These were compared with comparable published v-beta TCR sequences from people diagnosed with KD and from healthy individuals. Since TCR V-beta sequences are supposed to be antigens that induce clonal expansion, it was surprising that only a quarter of the TCR sequences derived from severe COVID-19 and MIS-C patients SARS-CoV-2 proteins.

View Article and Find Full Text PDF

Origins-of-life chemical experiments usually aim to produce specific chemical end-products such as amino acids, nucleic acids or sugars. The resulting chemical systems do not evolve or adapt because they lack natural selection processes. We have modified Miller origins-of-life apparatuses to incorporate several natural, prebiotic physicochemical selection factors that can be tested individually or in tandem: freezing-thawing cycles; drying-wetting cycles; ultraviolet light-dark cycles; and catalytic surfaces such as clays or minerals.

View Article and Find Full Text PDF

COVID-19 patients often develop coagulopathies including microclotting, thrombotic strokes or thrombocytopenia. Autoantibodies are present against blood-related proteins including cardiolipin (CL), serum albumin (SA), platelet factor 4 (PF4), beta 2 glycoprotein 1 (β2GPI), phosphodiesterases (PDE), and coagulation factors such as Factor II, IX, X and von Willebrand factor (vWF). Different combinations of autoantibodies associate with different coagulopathies.

View Article and Find Full Text PDF

This paper proposes the design of combination opioid-adrenergic tethered compounds to enhance efficacy and specificity, lower dosage, increase duration of activity, decrease side effects, and reduce risk of developing tolerance and/or addiction. Combinations of adrenergic and opioid drugs are sometimes used to improve analgesia, decrease opioid doses required to achieve analgesia, and to prolong the duration of analgesia. Recent mechanistic research suggests that these enhanced functions result from an allosteric adrenergic binding site on opioid receptors and, conversely, an allosteric opioid binding site on adrenergic receptors.

View Article and Find Full Text PDF

Cross-talk between opioid and adrenergic receptors is well-characterized and involves second messenger systems, the formation of receptor heterodimers, and the presence of extracellular allosteric binding regions for the complementary ligand; however, the evolutionary origins of these interactions have not been investigated. We propose that opioid and adrenergic ligands and receptors co-evolved from a common set of modular precursors so that they share binding functions. We demonstrate the plausibility of this hypothesis through a review of experimental evidence for molecularly complementary modules and report unexpected homologies between the two receptor types.

View Article and Find Full Text PDF

This study examines the relationship of pneumococcal vaccination rates, influenza, measles-mumps-rubella (MMR) diphtheria-tetanus-pertussis vaccinations (DTP), polio, Haemophilus influenzae type B (Hib), and Bacillus Calmette-Guerin (tuberculosis) vaccination rates to COVID-19 case and death rates for 51 nations that have high rates of COVID-19 testing and for which nearly complete childhood, at-risk adult and elderly pneumococcal vaccination data were available. The study is unique in a large number of nations examined, the range of vaccine controls, in testing effects of combinations of vaccinations, and in examining the relationship of COVID-19 and vaccination rates to invasive pneumococcal disease (IPD). Analysis of Italian regions and the states of the United States were also performed.

View Article and Find Full Text PDF

Severe COVID-19 is characterized by a "cytokine storm", the mechanism of which is not yet understood. I propose that cytokine storms result from synergistic interactions among Toll-like receptors (TLR) and nucleotide-binding oligomerization domain-like receptors (NLR) due to combined infections of SARS-CoV-2 with other microbes, mainly bacterial and fungal. This proposition is based on eight linked types of evidence and their logical connections.

View Article and Find Full Text PDF
Article Synopsis
  • - Various studies suggest pneumococcal vaccines may help protect against both symptomatic SARS-CoV-2 infections and related deaths, potentially due to cross-reactivity between vaccine proteins and SARS-CoV-2 antigens.
  • - While a comparison of the glycosylation structures showed no clear similarities, pneumococcal vaccines contain proteins that have significant similarities to SARS-CoV-2 proteins, which could explain their protective effect.
  • - New vaccines targeting highly antigenic proteins like PspA and PspC from pneumococcal vaccines are being tested in clinical trials to confirm their effectiveness against SARS-CoV-2.
View Article and Find Full Text PDF

Two conundrums puzzle COVID-19 investigators: 1) morbidity and mortality is rare among infants and young children and 2) rates of morbidity and mortality exhibit large variances across nations, locales, and even within cities. It is found that the higher the rate of pneumococcal vaccination in a nation (or city) the lower the COVID-19 morbidity and mortality. Vaccination rates with Bacillus Calmette-Guerin, poliovirus, and other vaccines do not correlate with COVID-19 risks, nor do COVID-19 case or death rates correlate with number of people in the population with diabetes, obesity, or adults over 65.

View Article and Find Full Text PDF

Persistent activation of toll-like receptors (TLR) and nucleotide-binding oligomerization domain-containing proteins (NOD) in the innate immune system is one necessary driver of autoimmune disease (AD), but its mechanism remains obscure. This study compares and contrasts TLR and NOD activation profiles for four AD (autoimmune myocarditis, myasthenia gravis, multiple sclerosis and rheumatoid arthritis) and their animal models. The failure of current AD theories to explain the disparate TLR/NOD profiles in AD is reviewed and a novel model is presented that explains innate immune support of persistent chronic inflammation in terms of unique combinations of complementary AD-specific antigens stimulating synergistic TLRs and/or NODs.

View Article and Find Full Text PDF

Crosstalk between opioid and adrenergic receptors is well characterized and due to interactions between second messenger systems, formation of receptor heterodimers, and extracellular allosteric binding regions. Both classes of receptors bind both sets of ligands. We propose here that receptor crosstalk may be mirrored in ligand complementarity.

View Article and Find Full Text PDF

We propose that ribosomal RNA (rRNA) formed the basis of the first cellular genomes, and provide evidence from a review of relevant literature and proteonomic tests. We have proposed previously that the ribosome may represent the vestige of the first self-replicating entity in which rRNAs also functioned as genes that were transcribed into functional messenger RNAs (mRNAs) encoding ribosomal proteins. rRNAs also encoded polymerases to replicate itself and a full complement of the transfer RNAs (tRNAs) required to translate its genes.

View Article and Find Full Text PDF

Extensive evidence demonstrates functional interactions between the adrenergic and opioid systems in a diversity of tissues and organs. While some effects are due to receptor and second messenger cross-talk, recent research has revealed an extracellular, allosteric opioid binding site on adrenergic receptors that enhances adrenergic activity and its duration. The present research addresses whether opioid receptors may have an equivalent extracellular, allosteric adrenergic binding site that has similar enhancing effects on opioid binding.

View Article and Find Full Text PDF

The causes of insulin resistance are not well-understood in either type 1 or type 2 diabetes. Insulin (INS) is known to undergo rapid non-enzymatic covalent conjugation to glucose or other sugars (glycation). Because the insulin receptor (IR) has INS-like regions associated with both glucose and INS binding, we hypothesize that hyperglycemic conditions may rapidly glycate the IR, chronically interfering with INS binding.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV) hides from the immune system in part by mimicking host antigens, including human leukocyte antigens. It is demonstrated here that HIV also mimics the V-β-D-J-β of approximately seventy percent of about 600 randomly selected human T cell receptors (TCR). This degree of mimicry is greater than any other human pathogen, commensal or symbiotic organism studied.

View Article and Find Full Text PDF