Publications by authors named "Robert Rohling"

Article Synopsis
  • The study focuses on developing a diagnostic model using Quantitative Ultrasound (QUS) to predict pre-eclampsia (PE) and small-for-gestational-age (SGA) outcomes in pregnancies.
  • Researchers collected placenta samples and ultrasound data from women who had cesarean deliveries, measuring key parameters like attenuation and backscatter to create a logistic regression model.
  • The resulting model showed strong predictive ability, with an Area Under the Curve (AUROC) of 0.89, indicating its effectiveness, and future research aims to validate the model with in-utero QUS data.
View Article and Find Full Text PDF

A flexible ultrasound array can potentially provide a larger field-of-view, enhanced imaging resolution, and less operator dependency compared to conventional rigid transducer arrays. However, such transducer arrays require information about relative element positions for beamforming and reconstructing geometrically accurate sonograms. In this study, we assess the potential utility of using spatial coherence of backscattered radiofrequency data to estimate transducer array shape (inverse problem).

View Article and Find Full Text PDF

This article describes a novel system for quantitative and volumetric measurement of tissue elasticity in the prostate using simultaneous multi-frequency tissue excitation. Elasticity is computed by using a local frequency estimator to measure the three-dimensional local wavelengths of steady-state shear waves within the prostate gland. The shear wave is created using a mechanical voice coil shaker which transmits simultaneous multi-frequency vibrations transperineally.

View Article and Find Full Text PDF

Purpose: Length and width measurements of the kidneys aid in the detection and monitoring of structural abnormalities and organ disease. Manual measurement results in intra- and inter-rater variability, is complex and time-consuming, and is fraught with error. We propose an automated approach based on machine learning for quantifying kidney dimensions from two-dimensional (2D) ultrasound images in both native and transplanted kidneys.

View Article and Find Full Text PDF

Real-time ultrasound imaging plays an important role in ultrasound-guided interventions. The 3-D imaging provides more spatial information compared to conventional 2-D frames by considering the volumes of data. One of the main bottlenecks of 3-D imaging is the long data acquisition time, which reduces practicality and can introduce artifacts from unwanted patient or sonographer motion.

View Article and Find Full Text PDF

Quantitative tissue stiffness characterization using ultrasound (US) has been shown to improve prostate cancer (PCa) detection in multiple studies. Shear wave absolute vibro-elastography (SWAVE) allows quantitative and volumetric assessment of tissue stiffness using external multifrequency excitation. This article presents a proof of concept of a first-of-a-kind 3-D hand-operated endorectal SWAVE system designed to be used during systematic prostate biopsy.

View Article and Find Full Text PDF

Objective: Modelling ultrasound speckle to characterise tissue properties has generated considerable interest. As speckle is dependent on the underlying tissue architecture, modelling it may aid in tasks such as segmentation or disease detection. For the transplanted kidney, where ultrasound is used to investigate dysfunction, it is unknown which statistical distribution best characterises such speckle.

View Article and Find Full Text PDF

Pregnancy complications such as pre-eclampsia (PE) and intrauterine growth restriction (IUGR) are associated with structural and functional changes in the placenta. Different elastography techniques with an ability to assess the mechanical properties of tissue can identify and monitor the pathological state of the placenta. Currently available elastography techniques have been used with promising results to detect placenta abnormalities; however, limitations include inadequate measurement depth and safety concerns from high negative pressure pulses.

View Article and Find Full Text PDF

Purpose: Using machine learning, we developed a proprietary ultrasound software called the Spine Level Identification (SLIDE) system, which automatically identifies lumbar landmarks in real time as the operator slides the transducer over the lumber spine. Here, we assessed the agreement between SLIDE and manual palpation and traditional lumbar ultrasound (LUS) for determining the primary target L3-4 interspace.

Methods: Upon institutional ethics approval and informed consent, 76 healthy term parturients scheduled for elective Caesarean delivery were recruited.

View Article and Find Full Text PDF

Development of non-invasive and placenta imaging techniques can potentially identify biomarkers of placental health. Correlative imaging using multiple multiscale modalities is particularly important to advance the understanding of placenta structure, function and their relationship. The objective of the project SWAVE 2.

View Article and Find Full Text PDF

We introduce two model-based iterative methods to obtain shear modulus images of tissue using magnetic resonance elastography. The first method jointly finds the displacement field that best fits tissue displacement data and the corresponding shear modulus. The displacement satisfies a viscoelastic wave equation constraint, discretized using the finite element method.

View Article and Find Full Text PDF

Ultrasound imaging is a key investigatory step in the evaluation of chronic kidney disease and kidney transplantation. It uses nonionizing radiation, is noninvasive, and generates real-time images, making it the ideal initial radiographic test for patients with abnormal kidney function. Ultrasound enables the assessment of both structural (form and size) and functional (perfusion and patency) aspects of kidneys, both of which are especially important as the disease progresses.

View Article and Find Full Text PDF

Advances in human-computer interaction (HCI) technologies have granted sonographers and radiologists a much improved user experience when operating different ultrasound (US) machines. Continued HCI improvements in US would benefit from a systematic study of the HCI control logic used in this domain. Such a study has not been presented previously and is the subject of this paper.

View Article and Find Full Text PDF

This paper presents U-LanD, a framework for automatic detection of landmarks on key frames of the video by leveraging the uncertainty of landmark prediction. We tackle a specifically challenging problem, where training labels are noisy and highly sparse. U-LanD builds upon a pivotal observation: a deep Bayesian landmark detector solely trained on key video frames, has significantly lower predictive uncertainty on those frames vs.

View Article and Find Full Text PDF

Quantitative ultrasound (QUS) offers a non-invasive and objective way to quantify tissue health. We recently presented a spatially adaptive regularization method for reconstruction of a single QUS parameter, limited to a two dimensional region. That proof-of-concept study showed that regularization using homogeneity prior improves the fundamental precision-resolution trade-off in QUS estimation.

View Article and Find Full Text PDF

Significance: As linear array transducers are widely used in clinical ultrasound imaging, photoacoustic tomography (PAT) with linear arrays is similarly suitable for clinical applications. However, due to the limited-view problem, a linear array has limited performance and leads to artifacts and blurring, which has hindered its broader application. There is a need to address the limited-view problem in PAT imaging with linear arrays.

View Article and Find Full Text PDF

In shear wave absolute vibro-elastography (S-WAVE), a steady-state multi-frequency external mechanical excitation is applied to tissue, while a time-series of ultrasound radio-frequency (RF) data are acquired. Our objective is to determine the potential of S-WAVE to classify breast tissue lesions as malignant or benign. We present a new processing pipeline for feature-based classification of breast cancer using S-WAVE data, and we evaluate it on a new data set collected from 40 patients.

View Article and Find Full Text PDF

In echocardiography (echo), an electrocardiogram (ECG) is conventionally used to temporally align different cardiac views for assessing critical measurements. However, in emergencies or point-of-care situations, acquiring an ECG is often not an option, hence motivating the need for alternative temporal synchronization methods. Here, we propose Echo-SyncNet, a self-supervised learning framework to synchronize various cross-sectional 2D echo series without any human supervision or external inputs.

View Article and Find Full Text PDF

We developed a machine learning model for efficient analysis of echocardiographic image quality in hospitalized patients. This study applied a machine learning model for automated transthoracic echo (TTE) image quality scoring in three inpatient groups. Our objectives were: (1) Assess the feasibility of a machine learning model for echo image quality analysis, (2) Establish the comprehensiveness of real-world TTE reporting by clinical group, and (3) Determine the relationship between machine learning image quality and comprehensiveness of TTE reporting.

View Article and Find Full Text PDF

Magnetic resonance elastography (MRE) is commonly regarded as the imaging-based gold-standard for liver fibrosis staging, comparable to biopsy. While ultrasound-based elastography methods for liver fibrosis staging have been developed, they are confined to a 1D or a 2D region of interest and to a limited depth. 3D Shear Wave Absolute Vibro-Elastography (S-WAVE) is a steady-state, external excitation, volumetric elastography technique that is similar to MRE, but has the additional advantage of multi-frequency excitation.

View Article and Find Full Text PDF

The placenta is a vital organ for growth and development of the fetus. Shear Wave Absolute Vibro-Elastography (SWAVE) is a new elastography technique proposed to detect placenta disorders. Elastography involves applying a force on the tissue and measuring the resulting tissue deformation.

View Article and Find Full Text PDF

Purpose: This scoping review covers needle visualization and localization techniques in ultrasound, where localization-based approaches mostly aim to compute the needle shaft (and tip) location while potentially enhancing its visibility too.

Methods: A literature review is conducted on the state-of-the-art techniques, which could be divided into five categories: (1) signal and image processing-based techniques to augment the needle, (2) modifications to the needle and insertion to help with needle-transducer alignment and visibility, (3) changes to ultrasound image formation, (4) motion-based analysis and (5) machine learning.

Results: Advantages, limitations and challenges of representative examples in each of the categories are discussed.

View Article and Find Full Text PDF

Effective epidural needle placement and injection involves accurate identification of the midline of the spine. Ultrasound, as a safe pre-procedural imaging modality, is suitable for epidural guidance because it offers adequate visibility of the vertebral anatomy. However, image interpretation remains a key challenge, especially for novices.

View Article and Find Full Text PDF

Purpose: Optimizing patient position and needle puncture site are important factors for successful neuraxial anesthesia. Two paramedian approaches are commonly utilized and we sought to determine whether variations of the seated position would increase the chance of puncture success.

Methods: We simulated paramedian needle passes on three-dimensional lumbar spine models registered to volumetric ultrasound data acquired from ten healthy volunteers in three different positions: 1) prone; 2) seated with thoracic and lumbar flexion; and 3) seated as in position 2, but with a 10° dorsal tilt.

View Article and Find Full Text PDF