In this Letter, we report the first in situ transmission electron microscopy observation of electrochemical oxidation of Li2O2, providing insights into the rate limiting processes that govern charge in Li-O2 cells. In these studies, oxidation of electrochemically formed Li2O2 particles, supported on multiwall carbon nanotutubes (MWCNTs), was found to occur preferentially at the MWCNT/Li2O2 interface, suggesting that electron transport in Li2O2 ultimately limits the oxidation kinetics at high rates or overpotentials.
View Article and Find Full Text PDFLi-O2 batteries, wherein solid Li2O2 is formed at the porous air cathode during discharge, are candidates for high gravimetric energy (3212 Wh/kgLi2O2) storage for electric vehicles. Understanding and controlling the nucleation and morphological evolution of Li2O2 particles upon discharge is key to achieving high volumetric energy densities. Scanning and transmission electron microscopy were used to characterize the discharge product formed in Li-O2 batteries on electrodes composed of carpets of aligned carbon nanotubes.
View Article and Find Full Text PDFGrowth of vertically aligned carbon nanotube (CNT) carpets on metallic substrates at low temperatures was achieved by controlled thermal treatment of ethylene and hydrogen at a temperature higher than the substrate temperature. High-resolution transmission electron microscopy showed that nanotubes were crystalline for a preheating temperature of 770 degrees C and a substrate temperature of 500 degrees C. Conductive atomic force microscopy measurements indicated electrical contact through the CNT carpet to the metallic substrate with an approximate resistance of 35 kOmega for multiwall carpets taller than two micrometers.
View Article and Find Full Text PDF