Publications by authors named "Robert R Maier"

A prototype of a scalable and potentially low-cost stacked array piezoelectric deformable mirror (SA-PDM) with 35 active elements is presented in this paper. This prototype is characterized by a 2 μm maximum actuator stroke, a 1.4 μm mirror sag (measured for a 14 mm × 14 mm area of the unpowered SA-PDM), and a ±200 nm hysteresis error.

View Article and Find Full Text PDF
Article Synopsis
  • A new type of fiber called Negative Curvature Fiber (NCF) allows for the transmission of high average power laser pulses at 1030 nm and 1064 nm wavelengths for micro-machining applications.
  • Picosecond pulses achieve over 36 W average power and a peak power density of 1.5 TWcm⁻², all while maintaining the integrity of the fiber ends.
  • Nanosecond pulses, with energies exceeding 1 mJ and a 92% coupling efficiency, enable effective micro-machining of materials like fused silica, aluminum, and titanium.
View Article and Find Full Text PDF

We describe the use of arrayed waveguide gratings (AWGs) in the interrogation of fiber Bragg gratings (FBGs) for dynamic strain measurement. The ratiometric AWG output was calibrated in a static deflection experiment over a +/-200 microepsilon range. Dynamic strain measurement was demonstrated with a FBG in a conventional single-mode fiber mounted on the surface of a vibrating cantilever and on a piezoelectric actuator, giving a resolution of 0.

View Article and Find Full Text PDF

We present a fiber interferometer for the simultaneous measurement of phase at multiple wavelengths from a single broadband femtosecond laser. Narrow-bandwidth fiber Bragg gratings isolate a particular frequency from the broad-bandwidth laser pulse produced. The multiwavelength phase data permit the unambiguous measurement range to be significantly increased compared with the wavelengths used in the interferometer.

View Article and Find Full Text PDF

At wavelengths slightly shorter than the normal resonance for a fiber Bragg grating, radiation can be coupled into cladding and radiation modes that become visible external to the fiber. We describe experimental measurements on a fiber Bragg grating under broadband illumination, showing the axial variation and angular distribution of side-scattered radiation. The scattering signal can locate the grating position subject to an offset in the backscatter direction.

View Article and Find Full Text PDF

We describe the characterization of the temperature and strain responses of fiber Bragg grating sensors by use of an interferometric interrogation technique to provide an absolute measurement of the grating wavelength. The fiber Bragg grating temperature response was found to be nonlinear over the temperature range -70 degrees C to 80 degrees C. The nonlinearity was observed to be a quadratic function of temperature, arising from the linear dependence on temperature of the thermo-optic coefficient of silica glass over this range, and is in good agreement with a theoretical model.

View Article and Find Full Text PDF