Publications by authors named "Robert R A Bolt"

Herein, we report on the translation of a small scale ball-milled amidation protocol into a large scale continuous reactive extrusion process. Critical components to the successful translation were: a) understanding how the different operating parameters of a twin-screw extruder should be harnessed to control prolonged continuous operation, and b) consideration of the physical form of the input materials. The amidation reaction is applied to 36 amides spanning a variety of physical form combinations (liquid-liquid, solid-liquid and solid-solid).

View Article and Find Full Text PDF

Chitin-derived furans offer a sustainable alternative feedstock for nitrogen appended aromatic compounds. Herein, we address the challenge of using chitin-derived furans, 3-acetamido-5-acetylfuran (3A5AF) and 3-acetamido-5-furfural aldehyde (3A5F), to favour the formation of exo Diels-Alder adducts and 4-acetylaminophthalimides respectively, using a mechanochemical ball-milling technique. Mechanochemical activation is explored through the synthesis of 7-oxa-norbornene backbones with novel substitution pattern from 3A5AF in yields up to 77 % and improved exo:endo selectivity compared to solution-phase reactions.

View Article and Find Full Text PDF
Article Synopsis
  • A novel method for catalyzing the Suzuki-Miyaura coupling reaction using nickel was developed, focusing on aryl sulfamates and boronic acids.
  • The process is environmentally friendly, being solvent-free and conducted under air, while utilizing a programmable temperature control system for consistency.
  • This method can be scaled up significantly, achieving a 200-fold increase in production using twin-screw extrusion, leading to the creation of larger quantities of the desired materials.
View Article and Find Full Text PDF

Rapid and wide-ranging developments have established mechanochemistry as a powerful avenue in sustainable organic synthesis. This is primarily due to unique opportunities which have been offered in solvent-free - or highly solvent-minimised - reaction systems. Nevertheless, despite elegant advances in ball-milling technology, limitations in scale-up still remain.

View Article and Find Full Text PDF

Efforts to generate organomanganese reagents under ball-milling conditions have led to the serendipitous discovery that manganese metal can mediate the reductive dimerization of arylidene malonates. The newly uncovered process has been optimized and its mechanism explored using CV measurements, radical trapping experiments, EPR spectroscopy, and solution control reactions. This unique reactivity can also be translated to solution whereupon pre-milling of the manganese is required.

View Article and Find Full Text PDF