Publications by authors named "Robert Passier"

Article Synopsis
  • The study focuses on how electrical and mechanical functions of the heart can be affected by diseases, using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as a model for research.
  • It explores innovative methods to evaluate the electrical and mechanical properties of hiPSC-CMs associated with inherited heart conditions, specifically Brugada syndrome and dilated cardiomyopathy, by organizing them into a bilayer configuration.
  • The research employs advanced techniques such as high-density microelectrode arrays and various microscopy methods to measure cardiac functions and responses to stimulation, providing a comprehensive approach to understanding disease mechanisms and potential drug responses.
View Article and Find Full Text PDF

Osteoclasts, the bone resorbing cells of hematopoietic origin formed by macrophage fusion, are essential in bone health and disease. However, in vitro research on osteoclasts remains challenging due to heterogeneous cultures that only contain a few multinucleated osteoclasts. Indeed, a strategy to generate homogeneous populations of multinucleated osteoclasts in a scalable manner has remained elusive.

View Article and Find Full Text PDF
Article Synopsis
  • Advanced in vitro heart models are essential for better disease modeling and drug testing, as current models have limitations in cell complexity and structure.
  • This study introduces a new Heart-on-Chip (HoC) model that combines different heart cell types and mimics the heart's physiological environment through specialized flow conditions.
  • The resulting miniaturized micro-EHTs show improved heart muscle performance and altered drug responses, indicating that these complex models can enhance drug testing and therapeutic research.
View Article and Find Full Text PDF

Cardiotoxicity remains a major cause of drug withdrawal, partially due to lacking predictability of animal models. Additionally, risk of cardiotoxicity following treatment of cancer patients is treatment limiting. It is unclear which patients will develop heart failure following therapy.

View Article and Find Full Text PDF

Organoids are engineered 3D miniature tissues that are defined by their organ-like structures, which drive a fundamental understanding of human development. However, current organoid generation methods are associated with low production throughputs and poor control over size and function including due to organoid merging, which limits their clinical and industrial translation. Here, we present a microfluidic platform for the mass production of lumenogenic embryoid bodies and functional cardiospheres.

View Article and Find Full Text PDF

Heart rhythm disorders, arrhythmias, place a huge economic burden on society and have a large impact on the quality of life of a vast number of people. Arrhythmias can have genetic causes but primarily arise from heart tissue remodeling during aging or heart disease. As current therapies do not address the causes of arrhythmias but only manage the symptoms, it is of paramount importance to generate innovative test models and platforms for gaining knowledge about the underlying disease mechanisms which are compatible with drug screening.

View Article and Find Full Text PDF

Heart failure (HF) is a progressive chronic disease that remains a primary cause of death worldwide, affecting over 64 million patients. HF can be caused by cardiomyopathies and congenital cardiac defects with monogenic etiology. The number of genes and monogenic disorders linked to development of cardiac defects is constantly growing and includes inherited metabolic disorders (IMDs).

View Article and Find Full Text PDF

The high rate of drug withdrawal from the market due to cardiovascular toxicity or lack of efficacy, the economic burden, and extremely long time before a compound reaches the market, have increased the relevance of human in vitro models like human (patient-derived) pluripotent stem cell (hPSC)-derived engineered heart tissues (EHTs) for the evaluation of the efficacy and toxicity of compounds at the early phase in the drug development pipeline. Consequently, the EHT contractile properties are highly relevant parameters for the analysis of cardiotoxicity, disease phenotype, and longitudinal measurements of cardiac function over time. In this study, we developed and validated the software HAARTA (Highly Accurate, Automatic and Robust Tracking Algorithm), which automatically analyzes contractile properties of EHTs by segmenting and tracking brightfield videos, using deep learning and template matching with sub-pixel precision.

View Article and Find Full Text PDF

Environmental stiffness is a crucial determinant of cell function. There is a long-standing quest for reproducible and (human matrix) bio-mimicking biomaterials with controllable mechanical properties to unravel the relationship between stiffness and cell behavior. Here, we evaluate methacrylated human recombinant collagen peptide (RCPhC1-MA) hydrogels as a matrix to control 3D microenvironmental stiffness and monitor cardiac cell response.

View Article and Find Full Text PDF

The myocardium is a mechanically active tissue typified by anisotropy of the resident cells [cardiomyocytes (CMs) and cardiac fibroblasts (cFBs)] and the extracellular matrix (ECM). Upon ischemic injury, the anisotropic tissue is replaced by disorganized scar tissue, resulting in loss of coordinated contraction. Efforts to re-establish tissue anisotropy in the injured myocardium are hampered by a lack of understanding of how CM and/or cFB structural organization is affected by the two major physical cues inherent in the myocardium: ECM organization and cyclic mechanical strain.

View Article and Find Full Text PDF

In order to fabricate functional organoids and microtissues, a high cell density is generally required. As such, the placement of cell suspensions in molds or microwells to allow for cell concentration by sedimentation is the current standard for the production of organoids and microtissues. Even though molds offer some level of control over the shape of the resulting microtissue, this control is limited as microtissues tend to compact towards a sphere after sedimentation of the cells.

View Article and Find Full Text PDF

Human pluripotent stem cell (hPSC)-derived cardiomyocytes have proven valuable for modeling disease and as a drug screening platform. Here, we depict an optimized protocol for the directed differentiation of hPSCs toward cardiomyocytes with an atrial identity by modulating the retinoic acid signaling cascade in spin embryoid bodies. The crucial steps of the protocol, including hPSC maintenance, embryoid body (EB) differentiation, the induction of cardiac mesoderm, direction toward the atrial phenotype, as well as molecular and functional characterization of the cardiomyocytes, are described.

View Article and Find Full Text PDF

The use of Engineered Heart Tissues (EHT) as in vitro model for disease modeling and drug screening has increased, as they provide important insight into the genetic mechanisms, cardiac toxicity or drug responses. Consequently, this has highlighted the need for a standardized, unbiased, robust and automatic way to analyze hallmark physiological features of EHTs. In this study we described and validated a standalone application to analyze physiological features of EHTs in an automatic, robust, and unbiased way, using low computational time.

View Article and Find Full Text PDF

Cardiovascular tissue engineering and regeneration strive to provide long-term, effective solutions for a growing group of patients in need of myocardial repair, vascular (access) grafts, heart valves, and regeneration of organ microcirculation. In the past two decades, ongoing convergence of disciplines and multidisciplinary collaborations between cardiothoracic surgeons, cardiologists, bioengineers, material scientists, and cell biologists have resulted in better understanding of the problems at hand and novel regenerative approaches. As a side effect, however, the field has become strongly organized and differentiated around topical areas at risk of reinvention of technologies and repetition of approaches across the areas.

View Article and Find Full Text PDF

Cardiomyocytes derived from human pluripotent stem cells (hPSC-CMs) hold a great potential as human in vitro models for studying heart disease and for drug safety screening. Nevertheless, their associated immaturity relative to the adult myocardium limits their utility in cardiac research. In this study, we describe the development of a platform for generating three-dimensional engineered heart tissues (EHTs) from hPSC-CMs for the measurement of force while under mechanical and electrical stimulation.

View Article and Find Full Text PDF

Organs-on-chips are a unique class of microfluidic cell culture models, in which the tissue microenvironment is mimicked. Unfortunately, their widespread use is hampered by their operation complexity and incompatibility with end-user research settings. To address these issues, many commercial and non-commercial platforms have been developed for semi-automated culture of organs-on-chips.

View Article and Find Full Text PDF

Cardiovascular diseases represent a major cause of morbidity and mortality, necessitating research to improve diagnostics, and to discover and test novel preventive and curative therapies, all of which warrant experimental models that recapitulate human disease. The translation of basic science results to clinical practice is a challenging task, in particular for complex conditions such as cardiovascular diseases, which often result from multiple risk factors and comorbidities. This difficulty might lead some individuals to question the value of animal research, citing the translational 'valley of death', which largely reflects the fact that studies in rodents are difficult to translate to humans.

View Article and Find Full Text PDF

The lack of a scalable and robust source of well-differentiated human atrial myocytes constrains the development of in vitro models of atrial fibrillation (AF). Here we show that fully functional atrial myocytes can be generated and expanded one-quadrillion-fold via a conditional cell-immortalization method relying on lentiviral vectors and the doxycycline-controlled expression of a recombinant viral oncogene in human foetal atrial myocytes, and that the immortalized cells can be used to generate in vitro models of AF. The method generated 15 monoclonal cell lines with molecular, cellular and electrophysiological properties resembling those of primary atrial myocytes.

View Article and Find Full Text PDF

Human stem cell-derived cells and tissues hold considerable potential for applications in regenerative medicine, disease modeling and drug discovery. The generation, culture and differentiation of stem cells in low-volume, automated and parallelized microfluidic chips hold great promise to accelerate the research in this domain. Here, we show that we can differentiate human embryonic stem cells (hESCs) to early cardiac mesodermal cells in microfluidic chambers that have a volume of only 30 nanoliters, using discontinuous medium perfusion.

View Article and Find Full Text PDF

Organs-on-chips are microphysiological in vitro models of human organs and tissues that rely on culturing cells in a well-controlled microenvironment that has been engineered to include key physical and biochemical parameters. Some systems contain a single perfused microfluidic channel or a patterned hydrogel, whereas more complex devices typically employ two or more microchannels that are separated by a porous membrane, simulating the tissue interface found in many organ subunits. The membranes are typically made of synthetic and biologically inert materials that are then coated with extracellular matrix (ECM) molecules to enhance cell attachment.

View Article and Find Full Text PDF

studies which focus on cellular metabolism can benefit from time-resolved readouts from the living cells. pH and O concentration are fundamental parameters upon which cellular metabolism is often inferred. This work demonstrates a novel use of a ruthenium oxide (RuO) electrode for studies.

View Article and Find Full Text PDF

The outer blood-retinal barrier (oBRB) tightly controls the transport processes between the neural tissue of the retina and the underlying blood vessel network. The barrier is formed by the retinal pigment epithelium (RPE), its basal membrane and the underlying choroidal capillary bed. Realistic three-dimensional cell culture based models of the oBRB are needed to study mechanisms and potential treatments of visual disorders such as age-related macular degeneration that result from dysfunction of the barrier tissue.

View Article and Find Full Text PDF

Despite the increased expenditure of the pharmaceutical industry on research and development, the number of drugs for cardiovascular diseases that reaches the market is decreasing. A major issue is the limited ability of the current in vitro and experimental animal models to accurately mimic human heart disease, which hampers testing of the efficacy of potential cardiac drugs. Moreover, many non-heart-related drugs have severe adverse cardiac effects, which is a major cause of drugs' retraction after approval.

View Article and Find Full Text PDF

Patient-derived human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are increasingly being used for disease modeling, drug screening and regenerative medicine. However, to date, an immature, fetal-like, phenotype of hPSC-CMs restrains their full potential. Increasing evidence suggests that the metabolic state, particularly important for provision of sufficient energy in highly active contractile CMs and anabolic and regulatory processes, plays an important role in CM maturation, which affects crucial functional aspects of CMs, such as contractility and electrophysiology.

View Article and Find Full Text PDF

Background: Cardiotoxicity, characterized by severe cardiac dysfunction, is a major problem in patients treated with different classes of anticancer drugs. Development of predictable human-based models and assays for drug screening are crucial for preventing potential drug-induced adverse effects. Current animal in vivo models and cell lines are not always adequate to represent human biology.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session593abq8mn37hbvop44futmkbast0m8f5): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once