The phase estimation algorithm is crucial for computing the ground-state energy of a molecular electronic Hamiltonian on a quantum computer. Its efficiency depends on the overlap between the Hamiltonian's ground state and an initial state, which tends to decay exponentially with system size. We showcase a practical orbital optimization scheme to alleviate this issue.
View Article and Find Full Text PDFQuantum phase estimation based on qubitization is the state-of-the-art fault-tolerant quantum algorithm for computing ground-state energies in chemical applications. In this context, the 1-norm of the Hamiltonian plays a fundamental role in determining the total number of required iterations and also the overall computational cost. In this work, we introduce the symmetry-compressed double factorization (SCDF) approach, which combines a CDF of the Hamiltonian with the symmetry shift technique, significantly reducing the 1-norm value.
View Article and Find Full Text PDFWe present the first hardware implementation of electrostatic interaction energies by using a trapped-ion quantum computer. As test system for our computation, we focus on the reduction of NO to NO catalyzed by a nitric oxide reductase (NOR). The quantum computer is used to generate an approximate ground state within the NOR active space.
View Article and Find Full Text PDFThe calculation of non-covalent interaction energies on noisy intermediate-scale quantum (NISQ) computers appears to be challenging with straightforward application of existing quantum algorithms. For example, the use of the standard supermolecular method with the variational quantum eigensolver (VQE) would require extremely precise resolution of the total energies of the fragments to provide for accurate subtraction to the interaction energy. Here we present a symmetry-adapted perturbation theory (SAPT) method that may provide interaction energies with high quantum resource efficiency.
View Article and Find Full Text PDFEfficient representations of the Hamiltonian, such as double factorization, drastically reduce the circuit depth or the number of repetitions in error corrected and noisy intermediate-scale quantum (NISQ) algorithms for chemistry. We report a Lagrangian-based approach for evaluating relaxed one- and two-particle reduced density matrices from double factorized Hamiltonians, unlocking efficiency improvements in computing the nuclear gradient and related derivative properties. We demonstrate the accuracy and feasibility of our Lagrangian-based approach to recover all off-diagonal density matrix elements in classically simulated examples with up to 327 quantum and 18 470 total atoms in QM/MM simulations with modest-sized quantum active spaces.
View Article and Find Full Text PDFWe explore the use of symmetry-adapted perturbation theory (SAPT) as a simple and efficient means to compute interaction energies between large molecular systems with a hybrid method combining NISQ-era quantum and classical computers. From the one- and two-particle reduced density matrices of the monomer wavefunctions obtained by the variational quantum eigensolver (VQE), we compute SAPT contributions to the interaction energy [SAPT(VQE)]. At first order, this energy yields the electrostatic and exchange contributions for non-covalently bound systems.
View Article and Find Full Text PDFWe develop a quartic-scaling implementation of coupled-cluster singles and doubles (CCSD) based on low-rank tensor hypercontraction (THC) factorizations of both the electron repulsion integrals (ERIs) and the doubles amplitudes. This extends our rank-reduced (RR) coupled-cluster method to incorporate higher-order tensor factorizations. The THC factorization of the doubles amplitudes accounts for most of the gain in computational efficiency as it is sufficient, in conjunction with a Cholesky decomposition of the ERIs, to reduce the computational complexity of most contributions to the CCSD amplitude equations.
View Article and Find Full Text PDFWe present an ab initio exciton model that extends the Frenkel exciton model and includes valence, charge-transfer, and multiexcitonic excited states. It serves as a general, parameter-free, yet computationally efficient and scalable approach for simulation of singlet fission processes in multichromophoric systems. A comparison with multiconfigurational methods confirms that our exciton model predicts consistent energies and couplings for the pentacene dimer and captures the correct physics.
View Article and Find Full Text PDFDNA methylation, a prototypical epigenetic modification implicated in gene silencing, occurs in many eukaryotes and plays a significant role in the etiology of diseases such as cancer. The filamentous fungus places DNA methylation at regions of constitutive heterochromatin such as in centromeres and in other A:T-rich regions of the genome, but this modification is dispensable for normal growth and development. This and other features render an excellent model to genetically dissect elements of the DNA methylation pathway.
View Article and Find Full Text PDFSimultaneous observation of nuclear and electronic motion is crucial for a complete understanding of molecular dynamics in excited electronic states. It is challenging for a single experiment to independently follow both electronic and nuclear dynamics at the same time. Here we show that ultrafast electron diffraction can be used to simultaneously record both electronic and nuclear dynamics in isolated pyridine molecules, naturally disentangling the two components.
View Article and Find Full Text PDFThe photochemistry of -stilbene proceeds through two pathways: - isomerization and ring closure to 4a,4b-dihydrophenanthrene (DHP). Despite serving for many decades as a model system for photoisomerization, the photodynamics of -stilbene is still not fully understood. We use multiple spawning on a SA-2-CASSCF(2,2) potential energy surface to simulate the nonadiabatic dynamics of isolated -stilbene.
View Article and Find Full Text PDFPSI4 is a free and open-source ab initio electronic structure program providing implementations of Hartree-Fock, density functional theory, many-body perturbation theory, configuration interaction, density cumulant theory, symmetry-adapted perturbation theory, and coupled-cluster theory. Most of the methods are quite efficient, thanks to density fitting and multi-core parallelism. The program is a hybrid of C++ and Python, and calculations may be run with very simple text files or using the Python API, facilitating post-processing and complex workflows; method developers also have access to most of PSI4's core functionalities via Python.
View Article and Find Full Text PDFEquation-of-motion coupled-cluster singles and doubles (EOM-CCSD) is a reliable and popular approach to the determination of electronic excitation energies. Recently, we have developed a rank-reduced CCSD (RR-CCSD) method that allows the ground-state coupled-cluster energy to be determined with low-rank cluster amplitudes. Here, we extend this approach to excited-state energies through a RR-EOM-CCSD method.
View Article and Find Full Text PDFWe studied the photoinduced ultrafast relaxation dynamics of the nucleobase thymine using gas-phase time-resolved photoelectron spectroscopy. By employing extreme ultraviolet pulses from high harmonic generation for photoionization, we substantially extend our spectral observation window with respect to previous studies. This enables us to follow relaxation of the excited state population all the way to low-lying electronic states including the ground state.
View Article and Find Full Text PDFWe develop an extension of the variational quantum eigensolver (VQE) algorithm-multistate contracted VQE (MC-VQE)-that allows for the efficient computation of the transition energies between the ground state and several low-lying excited states of a molecule, as well as the oscillator strengths associated with these transitions. We numerically simulate MC-VQE by computing the absorption spectrum of an ab initio exciton model of an 18-chromophore light-harvesting complex from purple photosynthetic bacteria.
View Article and Find Full Text PDFPhotoactive yellow protein (PYP) is a small photoreceptor protein that has two unusually short hydrogen bonds between the deprotonated p-coumaric acid chromophore and two amino acids, a tyrosine and a glutamic acid. This has led to considerable debate as to whether the glutamic acid-chromophore hydrogen bond is a low barrier hydrogen bond, with conflicting results in the literature. We have modified the p K of the tyrosine by amber suppression and of the chromophore by chemical substitution.
View Article and Find Full Text PDFWe propose a compression of the opposite-spin coupled cluster doubles amplitudes of the form τ ≡U TU , where U are the n-highest magnitude eigenvectors of the MP2 or MP3 doubles amplitudes. Together with a corresponding parameterization of the opposite-spin coupled cluster Lagrange multipliers of the form λ ≡U LU , this yields a fully self-consistent parameterization of reduced-rank coupled cluster equations in terms of the Lagrangian LT,L. Making this Lagrangian stationary with respect to the L parameters yields a perfectly determined set of equations for the T equations and coupled cluster energy.
View Article and Find Full Text PDFJ Chem Theory Comput
March 2019
We develop a new algorithm for the computation of the rotationally averaged elastic molecular diffraction signal for the cases of perpendicular or parallel pump-probe geometries. The algorithm first collocates the charge density from an arbitrary ab initio wave function onto a Becke quadrature grid [A. Becke, J.
View Article and Find Full Text PDFSymmetry-adapted perturbation theory (SAPT) is a valuable method for analyzing intermolecular interactions. The functional group SAPT partition (F-SAPT) has been introduced to provide additional insight into the origins of noncovalent interactions. Until now, SAPT analysis has been too costly for large ligand-protein complexes where it could provide key insights for chemical modifications that might improve ligand binding.
View Article and Find Full Text PDFJ Chem Theory Comput
August 2017
The Frenkel exciton model is a useful tool for theoretical studies of multichromophore systems. We recently showed that the exciton model could be used to coarse-grain electronic structure in multichromophoric systems, focusing on singly excited exciton states [ Acc. Chem.
View Article and Find Full Text PDFBecause of its computational efficiency, the state-averaged complete active-space self-consistent field (SA-CASSCF) method is commonly employed in nonadiabatic ab initio molecular dynamics. However, SA-CASSCF does not effectively recover dynamical correlation. As a result, there can be qualitative differences between SA-CASSCF potential energy surfaces (PESs) and more accurate reference surfaces computed using multistate complete active space second-order perturbation theory (MS-CASPT2).
View Article and Find Full Text PDFPsi4 is an ab initio electronic structure program providing methods such as Hartree-Fock, density functional theory, configuration interaction, and coupled-cluster theory. The 1.1 release represents a major update meant to automate complex tasks, such as geometry optimization using complete-basis-set extrapolation or focal-point methods.
View Article and Find Full Text PDFThe study of noncovalent interactions, notably including drug-protein binding, relies heavily on the language of localized functional group contacts: hydrogen bonding, π-π interactions, CH-π contacts, halogen bonding, etc. Applying the state-of-the-art functional group symmetry-adapted perturbation theory (F-SAPT) to an important question of chloro versus methyl aryl substitution in factor Xa inhibitor drugs, we find that a localized contact model provides an incorrect picture for the origin of the enhancement of chloro-containing ligands. Instead, the enhancement is found to originate from many intermediate-range contacts distributed throughout the binding pocket, particularly including the peptide bonds in the protein backbone.
View Article and Find Full Text PDFWe describe a simple modification ("balancing") of the block Davidson-Liu eigenvalue algorithm which allows the norms of the Krylov search directions to decrease naturally as convergence is approached. In the context of integral-direct configuration interaction singles and time-dependent density functional theory, this provides for efficient utilization of density-based screening. Tests within the TeraChem GPGPU code exhibit speedups of ∼2× on systems with up to 1500 atoms, with negligible loss in accuracy.
View Article and Find Full Text PDF