Aging affects virtually all organs of the body, but perhaps it has the most profound effects on the brain and its neurotransmitter systems, which influence a wide range of crucial functions, such as attention, focus, mood, neuroendocrine and autonomic functions, and sleep cycles. All of these essential functions, as well as fundamental cognitive processes such as memory, recall, and processing speed, utilize neuronal circuits that depend on neurotransmitter signaling between neurons. Glutamate (Glu), the main excitatory neurotransmitter in the CNS, is involved in most neuronal excitatory functions, including release of the neurotransmitter norepinephrine (NE).
View Article and Find Full Text PDFThis is an Editorial Highlight of a manuscript by Mallozzi et al. (2019) in the current issue of the Journal of Neurochemistry, in which the authors detail the biochemical pathway that leads to synaptic depression by cocaine. This pathway requires the adenosine A receptor and STEP phosphatases.
View Article and Find Full Text PDFThe 42 nicotinic acetylcholine receptor (nAChR) is important in central nervous system physiology and in mediating several of the pharmacological effects of nicotine on cognition, attention, and affective states. It is also the likely receptor that mediates nicotine addiction. This receptor assembles in two distinct stoichiometries: (4)(2) and (4)(2), which are referred to as high-sensitivity (HS) and low-sensitivity (LS) nAChRs, respectively, based on a difference in the potency of acetylcholine to activate them.
View Article and Find Full Text PDFUnlabelled: The α7-nicotinic cholinergic receptor (α7-nAChR) is a key mediator of brain communication and has been implicated in a wide variety of central nervous system disorders. None of the currently available PET radioligands for α7-nAChR are suitable for quantitative PET imaging, mostly because of insufficient specific binding. The goal of this study was to evaluate the potential of (18)F-ASEM ((18)F-JHU82132) as an α7-nAChR radioligand for PET.
View Article and Find Full Text PDFChronic nicotine administration increases the density of brain α4β2* nicotinic acetylcholine receptors (nAChRs), which may contribute to nicotine addiction by exacerbating withdrawal symptoms associated with smoking cessation. Varenicline, a smoking cessation drug, also increases these receptors in rodent brain. The maintenance of this increase by varenicline as well as nicotine replacement may contribute to the high rate of relapse during the first year after smoking cessation.
View Article and Find Full Text PDFA new series of derivatives of 3-(1,4-diazabicyclo[3.2.2]nonan-4-yl)dibenzo[b,d]thiophene 5,5-dioxide with high binding affinities and selectivity for α7-nicotinic acetylcholine receptors (α7-nAChRs) (Ki = 0.
View Article and Find Full Text PDFChronic nicotine administration increases α4β2 neuronal nicotinic acetylcholine receptor (nAChR) density in brain. This up-regulation probably contributes to the development and/or maintenance of nicotine dependence. nAChR up-regulation is believed to be triggered at the ligand binding site, so it is not surprising that other nicotinic ligands also up-regulate nAChRs in the brain.
View Article and Find Full Text PDFThe metabotropic glutamate 1a (mGlu1a) receptor is a G protein-coupled receptor linked with phosphoinositide (PI) hydrolysis and with β-arrestin-1-mediated sustained extracellular signal-regulated kinase (ERK) phosphorylation and cytoprotective signaling. Previously, we reported the existence of ligand bias at this receptor, inasmuch as glutamate induced both effects, whereas quisqualate induced only PI hydrolysis. In the current study, we showed that mGlu1 receptor agonists such as glutamate, aspartate, and l-cysteate were unbiased and activated both signaling pathways, whereas quisqualate and (S)-3,5-dihydroxyphenylglycine stimulated only PI hydrolysis.
View Article and Find Full Text PDFNicotine-induced up-regulation of neuronal nicotinic receptors (nAChRs) has been known and studied for more than 25 years. Other nAChR ligands can also up-regulate nAChRs, but it is not known if these ligands induce up-regulation by mechanisms similar to that of nicotine. In this study, we compared up-regulation by three different nicotinic agonists and a competitive antagonist of several different nAChR subtypes expressed in HEK293 cells.
View Article and Find Full Text PDFThe striatum is a key structure for movement control, but the mechanisms that dictate the output of distinct subpopulations of medium spiny projection neurons (MSNs), striatonigral projecting and dopamine D1 receptor- (D1+) or striatopallidal projecting and dopamine D2 receptor- (D2+) expressing neurons, remains poorly understood. GABA-mediated tonic inhibition largely controls neuronal excitability and action potential firing rates, and we previously suggested with pharmacological analysis that the GABA(A) receptor β3 subunit plays a large role in the basal tonic current seen in D2+ MSNs from young mice (Ade et al., 2008; Janssen et al.
View Article and Find Full Text PDFNicotine increases the number of neuronal nicotinic acetylcholine receptors (nAChRs) in brain. This study investigated the effects of chronic nicotine treatment on nAChRs expressed in primary cultured neurons. In particular, we studied the chronic effects of nicotine exposure on the total density, surface expression and turnover rate of heteromeric nAChRs.
View Article and Find Full Text PDFThe objective of this study was to identify and quantify the heteromeric neuronal nicotinic receptors (nAChRs) in the rat hippocampus. The density of nAChR subtypes was assessed by labeling them with [(3)H]epibatidine ([(3)H]EB) followed by immunoprecipitation with subunit-selective antibodies. Sequential immunoprecipitation assays were used to establish associations between two different subunits, which then allowed the full subunit composition of the receptors to be deduced.
View Article and Find Full Text PDFThe genetically epilepsy-prone rat (GEPR) exhibits inherited predisposition to sound stimuli-induced generalized tonic-clonic seizures (audiogenic reflex seizures) and is a valid model to study the physiopathology of epilepsy. In this model, the inferior colliculus (IC) exhibits enhanced neuronal firing that is critical in the initiation of reflex audiogenic seizures. The mechanisms underlying IC neuronal hyperexcitability that leads to seizure susceptibility are not as yet fully understood.
View Article and Find Full Text PDFWe used immunoprecipitation with subunit-specific antibodies to examine the distribution of heteromeric neuronal nicotinic acetylcholine receptors (nAChRs) that contain the alpha5 subunit in the adult rat brain. Among the regions of brain we surveyed, the alpha5 subunit is associated in approximately 37% of the nAChRs in the hippocampus, approximately 24% of the nAChRs in striatum, and 11-16% of the receptors in the cerebral cortex, thalamus, and superior colliculus. Sequential immunoprecipitation assays demonstrate that the alpha5 subunit is associated with alpha4beta2* nAChRs exclusively.
View Article and Find Full Text PDFThe loss of more than half the number of GABA(A) receptors yet lack of pronounced phenotype in mice lacking the gene for the GABA(A) alpha1 subunit is somewhat paradoxical. We explored the role of tonic GABA(A) receptor-mediated current as a target of compensatory regulation in the alpha1 knock-out (-/-) mice. A 62% increase of tonic current was observed in the cerebellar granule cells (CGCs) of alpha1-/- compared with wild-type (+/+) mice along with a 67% increase of baseline current variance.
View Article and Find Full Text PDFWe studied the action potential-evoked autaptic N-methyl-d-aspartate receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) using solitary cerebellar neurons cultured in microislands from wild-type (+/+), NR2A subunit knockout (NR2A-/-), and NR2C subunit knockout (NR2C-/-) mice. The peak amplitude of autaptic NMDA-EPSCs increased for all genotypes between days in vitro 8 (DIV8) and DIV13. Compared with +/+ cells at DIV13, NR2A-/- cells had smaller and NR2C-/- cells had larger NMDA-EPSCs.
View Article and Find Full Text PDFNicotinic cholinergic receptors (nAChRs) are present in ganglia in the peripheral nervous system. In autonomic ganglia, they are responsible for fast synaptic transmission, whereas in the sensory ganglia and sensory neurons, they may be involved in modulation of neurotransmission. The present study measured nAChRs in several rat autonomic ganglia: the superior cervical ganglia (SCG), sensory nodose ganglia, stellate ganglia, and pelvic ganglia.
View Article and Find Full Text PDFEthanol withdrawal enhances the current density of calcium (Ca(2+)) channels in inferior colliculus (IC) neurons. The present report shows that ethanol withdrawal markedly enhanced the susceptibility to seizures as it decreased significantly the protein levels of alpha(1B) subunit associated with N-type Ca(2+) channel in IC neurons of animals not tested for seizures. Thus, remodeling of N-type Ca(2+) channels may play an important role in neuronal hyperexcitability that leads to ethanol withdrawal seizures.
View Article and Find Full Text PDFNeuronal nicotinic acetylcholine receptors (nAChRs) were measured in the rat retina to determine the heteromeric subtypes. We detected seven nicotinic receptor subunit mRNA transcripts, alpha2-alpha4, alpha6, and beta2-beta4, with RNase protection assays. The density of heteromeric nAChR binding sites is approximately 3 times higher in the retina than in the cerebral cortex.
View Article and Find Full Text PDFBrain Res Dev Brain Res
August 2004
To investigate the possibility that glutamate receptor levels in the spinal cord are altered following injury to young rats, we used a previously characterized model of spinal cord contusion that produces a reliable injury in rats at postnatal day 14-15. Quantitative Western blot analysis was used to measure relative amounts of protein for several glutamate receptor subunits acutely (24 h) and chronically (28 days) after spinal cord injury (SCI). Acutely after injury significant decreases were observed in the GluR1, GluR2, and GluR4 subunits of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionate (AMPA) receptor, and the NR2A and NR2B subunits, but not the NR1 subunit, of the N-methyl-d-aspartate (NMDA) receptor.
View Article and Find Full Text PDFThe rat pineal gland contains a high density of neuronal nicotinic acetylcholine receptors (nAChRs). We characterized the pharmacology of the binding sites and function of these receptors, measured the nAChR subunit mRNA, and used subunit-specific antibodies to establish the receptor subtype as defined by subunit composition. In ligand binding studies, [3H]epibatidine ([3H]EB) binds with an affinity of approximately 100 pM to nAChRs in the pineal gland, and the density of these sites is approximately 5 times that in rat cerebral cortex.
View Article and Find Full Text PDFBackground: Ethanol is known to acutely inhibit AMPA receptor function, and sensitivity of AMPA receptors to ethanol is dependent on subunit composition in vivo and in vitro. A commonly used in vitro expression system for studying recombinant receptor subunits is the Xenopus laevis oocyte and two-electrode voltage-clamp electrophysiological recording. To date, ethanol sensitivity of injected receptor subunit complementary RNA (cRNA) has not been shown to be correlated with the actual expression of receptor subunits in oocytes.
View Article and Find Full Text PDFSymptoms of Huntington's disease may be caused by a toxic insult triggered by the mutant human huntingtin (Htt) protein itself, by a maladaptive protective mechanism initiated in response to an insult, or by a combination of these. We observed a protection from N-methyl-d-aspartate (NMDA) receptor-induced excitotoxicity in striata of symptomatic N171-82Q mice, a new transgenic model of Huntington's disease. The goal of this study was to determine if NMDA receptor-mediated signalling pathways are altered in these mice.
View Article and Find Full Text PDFThe NR3A subunit of the N-methyl-D-aspartate receptor has been shown to form glutamatergic receptor complexes with NR1 and NR2 subunits and excitatory glycinergic receptor complexes with NR1 alone. We developed an antibody to NR3A and, using quantitative immunoblotting techniques, determined the degree of association between the NR3A subunit and the NR1 and NR2 subunits as well as changes in these associations during development. NR3A expression peaks between postnatal days 7 and 10 in the cortex, midbrain, and hippocampus and reaches higher maximal expression levels in these areas than in the olfactory bulb and cerebellum.
View Article and Find Full Text PDFGlutamate is the major excitatory neurotransmitter in the CNS and its effects on neurons are dependent on the type and composition of glutamate receptors with which it interacts. In this study, the protein expression levels of several ionotropic glutamate receptor subunits (N-methyl-D-aspartate (NMDA) subunits NR1, NR2A, NR2B, and alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptor subunits GluR1, GluR2, GluR4) were quantified in particulate preparations from rat spinal cord at various ages after birth. We found that all six subunits showed high expression in the early postnatal period, followed by a subsequent decline as the rats matured to adults.
View Article and Find Full Text PDF