Sediments are found on all coral reefs around the globe. However, the amount of sediment in different reservoirs, and the rates at which sediments move between reservoirs, can shape the biological functioning of coral reefs. Unfortunately, relatively few studies have examined reef sediment dynamics, and associated bio-physical drivers, simultaneously over matching spatial and temporal scales.
View Article and Find Full Text PDFTraits are measurable features of organisms. Functional traits aspire to more. They quantify an organism's ecology and, ultimately, predict ecosystem functions based on local communities.
View Article and Find Full Text PDFCyanobacterial mats are increasingly recognised as a symptom of coral reef change. However, the spatial distribution of cyanobacterial mats during coral bleaching has received limited attention. We explored cyanobacterial mat distribution during a bleaching event at Lizard Island and considered hydrodynamics as a potential modifier.
View Article and Find Full Text PDFSediments in algal turfs can modify a wide variety of key ecological processes on coral reefs. While some larger reef fishes can remove these turf-bound sediments, the role of small, yet abundant, cryptobenthic fishes is currently unclear. To address this knowledge gap, we explored the extent to which the blenny, Ecsenius stictus, can shape sediment dynamics on coral reefs by quantifying their sediment ingestion and space use.
View Article and Find Full Text PDFThe presence of key organisms is frequently associated with the delivery of specific ecosystem functions. Areas with such organisms are therefore often considered to have greater levels of these functions. While this assumption has been the backbone of coral reef ecosystem-based management approaches for decades, we currently have only a limited understanding of how fish presence equates to function on coral reefs and whether this relationship is susceptible to stressors.
View Article and Find Full Text PDFUnprecedented global bleaching events have led to extensive loss of corals. This is expected to lead to extensive losses of obligate coral-dependent fishes. Here, we use a novel, spatially-matched census approach to examine the nature of fish-coral dependency across two mass coral bleaching events.
View Article and Find Full Text PDFMass coral bleaching is challenging today's coral reefs. However, our understanding of dynamics in benthic space holders, following such disturbances, is limited. To address this, we quantified successional dynamics of the ascidian, Didemnum cf.
View Article and Find Full Text PDFSci Total Environ
February 2019
Record-breaking temperatures between 2015 and 2016 led to unprecedented pan-tropical bleaching of scleractinian corals. On the Great Barrier Reef (GBR), the effects were most pronounced in the remote, northern region, where over 90% of reefs exhibited bleaching. Mass bleaching that results in widespread coral mortality represents a major disturbance event for reef organisms, including reef fishes.
View Article and Find Full Text PDFThe reef flat is one of the largest and most distinctive habitats on coral reefs, yet its role in reef trophodynamics is poorly understood. Evolutionary evidence suggests that reef flat colonization by grazing fishes was a major innovation that permitted the exploitation of new space and trophic resources. However, the reef flat is hydrodynamically challenging, subject to high predation risks and covered with sediments that inhibit feeding by grazers.
View Article and Find Full Text PDF