This article presents the results of a numerical analysis of a nitride-based vertical-cavity surface-emitting laser (VCSEL). The analyzed laser features an upper mirror composed of a monolithic high-contrast grating (MHCG) and a dielectric bottom mirror made of SiO and TaO materials. The emitter was designed for light emission at a wavelength of 403 nm.
View Article and Find Full Text PDFQuantum-cascade (QC) vertical-cavity surface-emitting lasers (VCSELs) could combine the single longitudinal mode operation, low threshold currents, circular output beam, and on-wafer testing associated with VCSEL configuration and the unprecedented flexibility of QCs in terms of wavelength emission tuning in the infrared spectral range. The key component of QC VCSEL is the monolithic high-contrast grating (MHCG) inducing light polarization, which is required for stimulated emission in unipolar quantum wells. In this paper, we demonstrate a numerical model of the threshold operation of a QC VCSEL under the pulse regime.
View Article and Find Full Text PDFUse of antiresonant structures is a proven, efficient method of improving lateral mode selectivity in VCSELs. In this paper, we analyze the impact of a low-refractive antiresonant oxide island buried in a top VCSEL mirror on the lasing conditions of lateral modes of different orders. By performing comprehensive thermal, electrical, and optical numerical analysis of the VCSEL device, we show the impact of the size and location of the oxide island on the current-crowding effect and compute threshold currents for various lateral modes.
View Article and Find Full Text PDFIn this paper, we present the results of a computational analysis of continuous-wave (CW) room-temperature (RT) semipolar InGaN/GaN edge-emitting lasers (EELs) operating in the green spectral region. In our calculations, we focused on the most promising materials and design solutions for the cladding layers, in terms of enhancing optical mode confinement. The structural modifications included optimization of top gold metalization, partial replacement of p-type GaN cladding layers with ITO and introducing low refractive index lattice-matched AlInN or plasmonic GaN regions.
View Article and Find Full Text PDFIn this paper, we consider several designs for nitride-based vertical-cavity surface-emitting lasers (VCSELs) with a top semiconductor-metal subwavelength grating (SMSG) as the facet mirror. The constructions of the bottom distributed Bragg reflectors (DBRs) used in the VCSEL designs were inspired by devices demonstrated recently by several research groups. A multiparameter numerical analysis was performed, based on self-consistent thermal and electrical simulations.
View Article and Find Full Text PDFSwitchable, double wavelength generation is demonstrated from a single vertical external cavity surface-emitting laser chip. Power of ~0.5 W for two wavelengths λ≈967 nm and 1,018 nm i.
View Article and Find Full Text PDF