GABAergic inhibitory interneurons, originating from the embryonic ventral forebrain territories, traverse a convoluted migratory path to reach the neocortex. These interneuron precursors undergo sequential phases of tangential and radial migration before settling into specific laminae during differentiation. Here, we show that the developmental trajectory of expression is dynamically controlled in these interneuron precursors at critical junctures of migration.
View Article and Find Full Text PDFAbnormalities in GABAergic inhibitory circuits have been implicated in the aetiology of autism spectrum disorder (ASD). ASD is caused by genetic and environmental factors. Several genes have been associated with syndromic forms of ASD, including FOXG1.
View Article and Find Full Text PDFSensory perception depends on neocortical computations that contextually adjust sensory signals in different internal and environmental contexts. Neocortical layer 1 (L1) is the main target of cortical and subcortical inputs that provide "top-down" information for context-dependent sensory processing. Although L1 is devoid of excitatory cells, it contains the distal "tuft" dendrites of pyramidal cells (PCs) located in deeper layers.
View Article and Find Full Text PDFSleep is an ancient animal behavior that is regulated similarly in species ranging from flies to humans. Various genes that regulate sleep have been identified in invertebrates, but whether the functions of these genes are conserved in mammals remains poorly explored. Drosophila insomniac (inc) mutants exhibit severely shortened and fragmented sleep.
View Article and Find Full Text PDFInsulin activates insulin receptors (InsRs) in the hypothalamus to signal satiety after a meal. However, the rising incidence of obesity, which results in chronically elevated insulin levels, implies that insulin may also act in brain centres that regulate motivation and reward. We report here that insulin can amplify action potential-dependent dopamine (DA) release in the nucleus accumbens (NAc) and caudate-putamen through an indirect mechanism that involves striatal cholinergic interneurons that express InsRs.
View Article and Find Full Text PDFUnlabelled: Neurogliaform (RELN+) and bipolar (VIP+) GABAergic interneurons of the mammalian cerebral cortex provide critical inhibition locally within the superficial layers. While these subtypes are known to originate from the embryonic caudal ganglionic eminence (CGE), the specific genetic programs that direct their positioning, maturation, and integration into the cortical network have not been elucidated. Here, we report that in mice expression of the transcription factor Prox1 is selectively maintained in postmitotic CGE-derived cortical interneuron precursors and that loss of Prox1 impairs the integration of these cells into superficial layers.
View Article and Find Full Text PDFThe parabigeminal (PBG), pedunculopontine (PPTg), and laterodorsal tegmental (LDTg) nuclei located in the rostral brainstem are the primary sources of the neurotransmitter acetylcholine (ACh) for the midbrain and thalamus, and as part of the ascending reticular activating system, these cholinergic signaling pathways regulate mouse behavioral responses to sensory stimuli. Here, I report that mice harboring a conditional deletion of ACh synthesis specifically within these nuclei (ChAT(En1 KO)) exhibit decreased ultrasonic vocalizations both as pups and adults, consistent with their previously reported hypoactivity when exploring the novel environment of the open field arena. Furthermore, in prepulse inhibition (PPI) tests, ChAT(En1 KO) animals exhibited increased sensorimotor gating in comparison to control littermates.
View Article and Find Full Text PDFSubstantia nigra pars reticulata (SNr) GABAergic neurons are projection neurons that convey output from the basal ganglia to target structures. These neurons exhibit spontaneous regular firing, but also exhibit burst firing in the presence of NMDA or when excitatory glutamatergic input to the SNr is activated. Notably, an increase in burst firing is also seen in Parkinson's disease.
View Article and Find Full Text PDFDopamine transmission is critical for exploratory motor behaviour. A key regulator is acetylcholine; forebrain acetylcholine regulates striatal dopamine release, whereas brainstem cholinergic inputs regulate the transition of dopamine neurons from tonic to burst firing modes. How these sources of cholinergic activity combine to control dopamine efflux and exploratory motor behaviour is unclear.
View Article and Find Full Text PDFBackground: The mammalian amygdala is composed of two primary functional subdivisions, classified according to whether the major output projection of each nucleus is excitatory or inhibitory. The posterior dorsal and ventral subdivisions of the medial amygdala, which primarily contain inhibitory output neurons, modulate specific aspects of innate socio-sexual and aggressive behaviors. However, the development of the neuronal diversity of this complex and important structure remains to be fully elucidated.
View Article and Find Full Text PDFBy combining an inducible genetic fate mapping strategy with electrophysiological analysis, we have systematically characterized the populations of cortical GABAergic interneurons that originate from the caudal ganglionic eminence (CGE). Interestingly, compared with medial ganglionic eminence (MGE)-derived cortical interneuron populations, the initiation [embryonic day 12.5 (E12.
View Article and Find Full Text PDFThe proneural gene Math1 is known to be involved in numerous functions within the nervous system, including unconscious proprioception, audition, and arousal. Two recent papers by the Zoghbi group in this issue of Neuron and a recent issue of PNAS now identify a critical role for this gene in the development of brainstem regions critical for conscious proprioception, interoception, and respiration.
View Article and Find Full Text PDFBackground: During the embryonic development of the cerebellum, neurons are produced from progenitor cells located along a ventricular zone within dorsal rhombomere 1 that extends caudally to the roof plate of the fourth ventricle. The apposition of the caudal neuroepithelium and roof plate results in a unique inductive region termed the cerebellar rhombic lip, which gives rise to granule cell precursors and other glutamatergic neuronal lineages. Recently, we and others have shown that, at early embryonic stages prior to the emergence of granule cell precursors (E12), waves of neurogenesis in the cerebellar rhombic lip produce specific hindbrain nuclei followed by deep cerebellar neurons.
View Article and Find Full Text PDFThe existence of stem cells in the adult nervous system is well recognized; however, the potential of these cells is still widely debated. We demonstrate that neural stem cells exist within the embryonic and adult cerebellum. Comparing the potential of neural stem cells derived from the forebrain and cerebellum, we find that progeny derived from each of these brain regions retain regional character in vitro as well as after homotopic transplantation.
View Article and Find Full Text PDF