Zeolites hold importance as catalysts and membranes across numerous industrial processes that produce most of the world's fuels and chemicals. In zeolite catalysis, the rate of molecular diffusion inside the micropore channels defines the catalyst's longevity and selectivity, thereby influencing the catalytic efficiency. Decreasing the diffusion pathlengths of zeolites to the nanoscopic level by fabricating well-organized hierarchically porous architecture can efficiently overcome their intrinsic mass-transfer limitations without losing hydrothermal stability.
View Article and Find Full Text PDFThe purpose of this work is to study the kinetics of self-assembly in the formation mechanism of anionic templated mesoporous solids (AMS-n) during the first few seconds of the synthesis as well as to demonstrate the use of alternating ion current (AIC) conductivity measurements to follow the self-assembly in complex hybrid systems. The formation of different AMS-n caged-type mesostructures through the delayed addition of the silica source is demonstrated and explained in terms of the interaction between the co-structure-directing agent (CSDA) and the oppositely charged surfactant headgroup regions. Our findings, supported by transmission electron microscopy, 29Si magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, dynamic light scattering (DLS) measurements, and powder X-ray diffraction suggest that the interaction of the CSDA with the surfactant headgroup occurs within seconds after its addition to the synthesis gel leading to interaction between the polymerizing CSDAs and the oppositely charged micelle and to an increase in the micelle-CSDA aggregate size.
View Article and Find Full Text PDFHere, we report the design of a hybrid inorganic/organic mesoporous material through simultaneous pore engineering and hydrophobic surface modification of the intramesochannels to improve the uptake of superparamagnetic maghemite nanocrystals via impregnation techniques. The mesoporous material of the SBA-15 type was functionalized in situ with thiol organo-siloxane groups. Restricting the addition of the thiol organo-siloxane to 2 mol % yielded an inorganic/organic hybrid material characterized by large pores and a well-ordered hexagonal p6mm mesophase.
View Article and Find Full Text PDF