Purpose: Variations in neural survival along the cochlear implant electrode array leads to off-place listening, resulting in poorer speech understanding outcomes for recipients. Therefore, it is important to develop and compare clinically viable tests to identify these patient-specific intra-cochlear neural differences.
Methods: Nineteen experienced cochlear implant recipients (9 males and 10 females) were recruited for this study.
Purpose: For some cochlear implants (CIs), it is possible to focus electrical stimulation by partially returning current from the active electrode to nearby, intra-cochlear electrodes (partial tripolar (pTP) stimulation). Another method achieves the opposite: "blurring" by stimulating multiple electrodes simultaneously. The Panoramic ECAP (PECAP) method provides a platform to investigate their effects in detail by measuring electrically evoked compound action potentials and estimating current spread and neural responsiveness along the length of the CI electrode array.
View Article and Find Full Text PDFDuring continuous speech perception, endogenous neural activity becomes time-locked to acoustic stimulus features, such as the speech amplitude envelope. This speech-brain coupling can be decoded using non-invasive brain imaging techniques, including electroencephalography (EEG). Neural decoding may provide clinical use as an objective measure of stimulus encoding by the brain-for example during cochlear implant listening, wherein the speech signal is severely spectrally degraded.
View Article and Find Full Text PDFElectrically evoked frequency-following responses (eFFRs) provide insight in the phase-locking ability of brainstem of cochlear-implant (CI) users. eFFRs can potentially be used to gain insight in the individual differences in the biological limitation on temporal encoding of the electrically stimulated auditory pathway, which can be inherent to the electrical stimulation itself and/or the degenerative processes associated with hearing loss. One of the major challenge of measuring eFFRs in CI users is the process of isolating the stimulation artifact from the neural response, as both the response and the artifact overlap in time and have similar frequency characteristics.
View Article and Find Full Text PDFPurpose: Attempts to use current-focussing strategies with cochlear implants (CI) to reduce neural spread-of-excitation have met with only mixed success in human studies, in contrast to promising results in animal studies. Although this discrepancy could stem from between-species anatomical and aetiological differences, the masking experiments used in human studies may be insufficiently sensitive to differences in excitation-pattern width.
Methods: We used an interleaved-masking method to measure psychophysical excitation patterns in seven participants with four masker stimulation configurations: monopolar (MP), partial tripolar (pTP), a wider partial tripolar (pTP + 2), and, importantly, a condition (RP + 2) designed to produce a broader excitation pattern than MP.
Difference limens for fundamental frequency (F0), F0DLs, are usually small for complex tones containing low harmonics that are resolved in the auditory periphery, but worsen when the rank of the lowest harmonic increases above about 6-8 and harmonics become less resolved. The traditional explanation for this, in terms of resolvability, has been challenged and an alternative explanation in terms of harmonic rank was suggested. Here, to disentangle the effects of resolvability and harmonic rank the complex tones were presented either diotically (all harmonics to both ears) or dichotically (even and odd harmonics to opposite ears); the latter increases resolvability but does not affect harmonic rank.
View Article and Find Full Text PDFTwo EEG experiments measured the sustained neural response to amplitude-modulated (AM) high-rate pulse trains presented to a single cochlear-implant (CI) electrode. Stimuli consisted of two interleaved pulse trains with AM rates F1 and F2 close to 80 and 120 Hz respectively, and where F2 = 1.5F1.
View Article and Find Full Text PDFThe spectro-temporal ripple for investigating processor effectiveness (STRIPES) test is a psychophysical measure of spectro-temporal resolution in cochlear-implant (CI) listeners. It has been validated using direct-line input and loudspeaker presentation with listeners of the Advanced Bionics CI. This article investigates the suitability of an online application using wireless streaming (webSTRIPES) as a remote test.
View Article and Find Full Text PDFObjectives: Electrically evoked compound action-potentials (ECAPs) can be recorded using the electrodes in a cochlear implant (CI) and represent the synchronous responses of the electrically stimulated auditory nerve. ECAPs can be obtained using a forward-masking method that measures the neural response to a probe and masker electrode separately and in combination. The panoramic ECAP (PECAP) analyses measured ECAPs obtained using multiple combinations of masker and probe electrodes and uses a nonlinear optimization algorithm to estimate current spread from each electrode and neural health along the cochlea.
View Article and Find Full Text PDFTo obtain combined behavioural and electrophysiological measures of pitch perception, we presented harmonic complexes, bandpass filtered to contain only high-numbered harmonics, to normal-hearing listeners. These stimuli resemble bandlimited pulse trains and convey pitch using a purely temporal code. A core set of conditions consisted of six stimuli with baseline pulse rates of 94, 188 and 280 pps, filtered into a HIGH (3365-4755 Hz) or VHIGH (7800-10,800 Hz) region, alternating with a 36% higher pulse rate.
View Article and Find Full Text PDFThis study assessed the detection of mistuning of a single harmonic in complex tones (CTs) containing either low-frequency harmonics or very high-frequency harmonics, for which phase locking to the temporal fine structure is weak or absent. CTs had F0s of either 280 or 1400 Hz and contained harmonics 6-10, the 8th of which could be mistuned. Harmonics were presented either diotically or dichotically (odd and even harmonics to different ears).
View Article and Find Full Text PDFWe describe a scalp-recorded measure of tonotopic selectivity, the "cortical onset response" (COR) and compare the results between humans and cats. The COR results, in turn, were compared with psychophysical masked-detection thresholds obtained using similar stimuli and obtained from both species. The COR consisted of averaged responses elicited by 50-ms tone-burst probes presented at 1-s intervals against a continuous noise masker.
View Article and Find Full Text PDFCochlear implant (CI) users show limited sensitivity to the temporal pitch conveyed by electric stimulation, contributing to impaired perception of music and of speech in noise. Neurophysiological studies in cats suggest that this limitation is due, in part, to poor transmission of the temporal fine structure (TFS) by the brainstem pathways that are activated by electrical cochlear stimulation. It remains unknown, however, how that neural limit might influence perception in the same animal model.
View Article and Find Full Text PDFHypothesis: Stimulation-Current-Induced Non-Stimulating Electrode Voltage Recordings (SCINSEVs) can help detect extracochlear electrodes for a variety of Cochlear Implant (CI) devices.
Background: Extracochlear electrodes (EEs) occur in 9 to 13% of cochlear implantations and commonly go unnoticed without imaging. Electrodes on the electrode array located extracochlearly are associated with non-auditory stimulation and a decrease in speech outcomes.
Objectives: To investigate the combined effect of changing pulse shape and grounding configuration to manage facial nerve stimulation (FNS) in cochlear implant (CI) recipients.
Patients: Three adult CI recipients with severe FNS were offered a replacement implant when standard stimulation strategies and programming adjustments did not resolve symptoms. Our hypothesis was that the facial nerve was less likely to be activated when using anodic pulses with "mixed-mode" intra-cochlear and extra-cochlear current return.
Cochlear implants (CIs) convey the amplitude envelope of speech by modulating high-rate pulse trains. However, not all of the envelope may be necessary to perceive amplitude modulations (AMs); the effective envelope depth may be limited by forward and backward masking from the envelope peaks. Three experiments used modulated pulse trains to measure which portions of the envelope can be effectively processed by CI users as a function of AM frequency.
View Article and Find Full Text PDFJ Assoc Res Otolaryngol
October 2021
Cochlear implants (CIs) are the world's most successful sensory prosthesis and have been the subject of intense research and development in recent decades. We critically review the progress in CI research, and its success in improving patient outcomes, from the turn of the century to the present day. The review focuses on the processing, stimulation, and audiological methods that have been used to try to improve speech perception by human CI listeners, and on fundamental new insights in the response of the auditory system to electrical stimulation.
View Article and Find Full Text PDFWe simulated the effect of several automatic gain control (AGC) and AGC-like systems and head movement on the output levels, and resulting interaural level differences (ILDs) produced by bilateral cochlear-implant (CI) processors. The simulated AGC systems included unlinked AGCs with a range of parameter settings, linked AGCs, and two proprietary multi-channel systems used in contemporary CIs. The results show that over the range of values used clinically, the parameters that most strongly affect dynamic ILDs are the release time and compression ratio.
View Article and Find Full Text PDFCochlear implants (CIs) are neuroprostheses that partially restore hearing for people with severe-to-profound hearing loss. While CIs can provide good speech perception in quiet listening situations for many, they fail to do so in environments with interfering sounds for most listeners. Previous research suggests that this is due to detrimental interaction effects between CI electrode channels, limiting their function to convey frequency-specific information, but evidence is still scarce.
View Article and Find Full Text PDFJ Acoust Soc Am
April 2021
Listeners appear able to extract a residue pitch from high-frequency harmonics for which phase locking to the temporal fine structure is weak or absent. The present study investigated musical interval perception for high-frequency harmonic complex tones using the same stimuli as Lau, Mehta, and Oxenham [J. Neurosci.
View Article and Find Full Text PDFThe knowledge of patient-specific neural excitation patterns from cochlear implants (CIs) can provide important information for optimizing efficacy and improving speech perception outcomes. The Panoramic ECAP ('PECAP') method (Cosentino et al. 2015) uses forward-masked electrically evoked compound action-potentials (ECAPs) to estimate neural activation patterns of CI stimulation.
View Article and Find Full Text PDFMusicians say that the pitches of tones with a frequency ratio of 2:1 (one octave) have a distinctive affinity, even if the tones do not have common spectral components. It has been suggested, however, that this affinity judgment has no biological basis and originates instead from an acculturation process ‒ the learning of musical rules unrelated to auditory physiology. We measured, in young amateur musicians, the perceptual detectability of octave mistunings for tones presented alternately (melodic condition) or simultaneously (harmonic condition).
View Article and Find Full Text PDFThe upper limit of rate-based pitch perception and rate discrimination can differ substantially across cochlear implant (CI) users. One potential reason for this difference is the presence of a biological limitation on temporal encoding in the electrically-stimulated auditory pathway, which can be inherent to the electrical stimulation itself and/or to the degenerative processes associated with hearing loss. Electrophysiological measures, like the electrically-evoked frequency following response (eFFR) and auditory change complex (eACC), could potentially provide valuable insights in the temporal processing limitations at the level of the brainstem and cortex in the electrically-stimulated auditory pathway.
View Article and Find Full Text PDFWe measured the sustained neural response to electrical stimulation by a cochlear implant (CI). To do so, we interleaved two stimuli with frequencies F1 and F2 Hz and recorded a neural distortion response (NDR) at F2-F1 Hz. We show that, because any one time point contains only the F1 or F2 stimulus, the instantaneous nonlinearities typical of electrical artefact should not produce distortion at this frequency.
View Article and Find Full Text PDF