The contributing effect of cerebrovascular pathology in Alzheimer's disease (AD) has become increasingly appreciated. Recent evidence suggests that amyloid-beta peptide (Abeta), the same peptide found in neuritic plaques of AD, may play a role via its vasoactive properties. Several studies have examined young Tg2576 mice expressing mutant amyloid precursor protein (APP) and having elevated levels of soluble Abeta but no cerebral amyloid angiopathy (CAA).
View Article and Find Full Text PDFGiven the compelling genetic and biochemical evidence that has implicated amyloid-beta (Abeta) in the pathogenesis of Alzheimer's disease, many studies have focused on ways to inhibit Abeta production, to reverse or impede the formation of toxic forms of Abeta, or to facilitate the clearance of Abeta from the brain, in the hope of developing viable treatments for the disease. Using transgenic mouse models of Alzheimer's disease, many advances have been made in methodologies using different immunization techniques designed to clear soluble and aggregated forms of Abeta from the brain. We have highlighted how data derived from studies using transgenic mouse models have shaped our understanding of immunization-dependent Abeta clearance mechanisms and how these studies have influenced the development of anti-Abeta immunotherapies in humans.
View Article and Find Full Text PDFNeuritic plaques are a defining feature of Alzheimer disease (AD) pathology. These structures are composed of extracellular accumulations of amyloid-beta peptide (Abeta) and other plaque-associated proteins, surrounded by large, swollen axons and dendrites (dystrophic neurites) and activated glia. Dystrophic neurites are thought to disrupt neuronal function, but whether this damage is static, dynamic, or reversible is unknown.
View Article and Find Full Text PDFIncreasing evidence demonstrates that there is marked damage and dysfunction not only in the gray matter but also in the white matter in Alzheimer's disease (AD). In this study, transgenic mice overexpressing beta-amyloid precursor protein (APP) under control of the platelet-derived growth factor promoter (PDAPP mice) were examined using diffusion tensor magnetic resonance imaging (DTI) to evaluate the extent of white matter injury before and following the development of AD-like pathology. The profile of DTI parameters was significantly different in old PDAPP mice compared to that of old control mice following the development of AD-like pathology.
View Article and Find Full Text PDFNeuritic plaques are one of the defining neuropathological features of Alzheimer's disease (AD). These structures are composed of a buildup of fibrils of the amyloid-beta (Abeta) peptide (amyloid) surrounded by activated glial cells and degenerating nerve processes (dystrophic neurites). To study neuritic plaques and possible abnormalities associated with dendrites, axons, and synaptic structures, we have developed an acute slice preparation model using PDAPP, yellow fluorescent protein (YFP) double transgenic mice (a mouse model with AD-like pathology that stably expresses YFP in a subset of neurons in the brain).
View Article and Find Full Text PDFNeuritic plaques are one of the stereotypical hallmarks of Alzheimer's disease (AD) pathology. These structures are composed of extracellular accumulations of fibrillar forms of the amyloid-beta peptide (Abeta), a variety of other plaque-associated proteins, activated glial cells, and degenerating nerve processes. To study the neuritic toxicity of different structural forms of Abeta in the context of regional connectivity and the entire cell, we crossed PDAPP transgenic (Tg) mice, a model with AD-like pathology, to Tg mice that stably express yellow fluorescent protein (YFP) in a subset of neurons in the brain.
View Article and Find Full Text PDFTo establish the major body axes, late Drosophila oocytes localize determinants to discrete cortical positions: bicoid mRNA to the anterior cortex, oskar mRNA to the posterior cortex, and gurken mRNA to the margin of the anterior cortex adjacent to the oocyte nucleus (the "anterodorsal corner"). These localizations depend on microtubules that are thought to be organized such that plus end-directed motors can move cargoes, like oskar, away from the anterior/lateral surfaces and hence toward the posterior pole. Likewise, minus end-directed motors may move cargoes toward anterior destinations.
View Article and Find Full Text PDF