Publications by authors named "Robert P Behringer"

We study the jamming phase diagram of sheared granular material using a novel Couette shear setup with a multiring bottom. The setup uses small basal friction forces to apply a volume-conserving linear shear with no shear band to a granular system composed of frictional photoelastic discs. The setup can generate arbitrarily large shear strain due to its circular geometry, and the shear direction can be reversed, allowing us to measure a feature that distinguishes shear-jammed from fragile states.

View Article and Find Full Text PDF

We report on a series of experiments in which a grain-sized intruder is pushed by a spring through a two-dimensional granular material composed of photoelastic disks in a Couette geometry. We study the intruder dynamics as a function of packing fraction for two types of supporting substrates: A frictional glass plate and a layer of water for which basal friction forces are negligible. We observe two dynamical regimes: Intermittent flow, in which the intruder moves freely most of the time but occasionally gets stuck, and stick-slip dynamics, in which the intruder advances via a sequence of distinct, rapid events.

View Article and Find Full Text PDF

We report on experiments investigating the dynamics of a slider that is pulled by a spring across a granular medium consisting of a vertical layer of photoelastic disks. The motion proceeds through a sequence of discrete events, analogous to seismic shocks, in which elastic energy stored in the spring is rapidly released. We measure the statistics of several properties of the individual events: the energy loss in the spring, the duration of the movement, and the temporal profile of the slider motion.

View Article and Find Full Text PDF

We study the local and global dynamics of sheared granular materials in a stick-slip experiment, using a slider and a spring. The system crackles, with intermittent slip avalanches, or exhibits irregular or periodic dynamics, depending on the shear rate and loading stiffness. The global force on the slider during shearing captures the transitions from the crackling to the periodic regime.

View Article and Find Full Text PDF

Cornstarch in water exhibits impact-activated solidification (IAS) and strong discontinuous shear thickening, with "shear jamming". However, these phenomena are absent in cornstarch in ethanol. Here we show that cornstarch granules swell under ambient conditions.

View Article and Find Full Text PDF

Granular materials consist of macroscopic grains, interacting via contact forces, and unaffected by thermal fluctuations. They are one of a class systems that undergo jamming, i.e.

View Article and Find Full Text PDF

We show how a weak force f enables intruder motion through dense granular materials subject to external mechanical excitations, in the present case, stepwise shearing. A force acts on a Teflon disk in a two-dimensional system of photoelastic disks. This force is much smaller than the smallest force needed to move the disk without any external excitation.

View Article and Find Full Text PDF

Shear jamming (SJ) occurs for frictional granular materials with packing fractions ϕ in ϕ_{S}<ϕ<ϕ_{J}^{0}, when the material is subject to shear strain γ starting from a force-free state. Here, ϕ_{J}^{μ} is the isotropic jamming point for particles with a friction coefficient μ. SJ states have mechanically stable anisotropic force networks, e.

View Article and Find Full Text PDF

We carry out a direct comparison of experimental and numerical realizations of the exact same granular system as it undergoes shear jamming. We adjust the numerical methods used to optimally represent the experimental settings and outcomes up to microscopic contact force dynamics. Measures presented here range from microscopic through mesoscopic to systemwide characteristics of the system.

View Article and Find Full Text PDF

We present the experimental and numerical studies of a two-dimensional sheared amorphous material composed of bidisperse photoelastic disks. We analyze the statistics of avalanches during shear including the local and global fluctuations in energy and changes in particle positions and orientations. We find scale-free distributions for these global and local avalanches denoted by power laws whose cutoffs vary with interparticle friction and packing fraction.

View Article and Find Full Text PDF

Above a certain solid fraction, dense granular suspensions in water exhibit non-Newtonian behavior, including impact-activated solidification. Although it has been suggested that solidification depends on boundary interactions, quantitative experiments on the boundary forces have not been reported. Using high-speed video, tracer particles, and photoelastic boundaries, we determine the impactor kinematics and the magnitude and timings of impactor-driven events in the body and at the boundaries of cornstarch suspensions.

View Article and Find Full Text PDF

We describe here how to apply the three-dimensional imaging technique of refractive index matched scanning to hydrogel spheres. Hydrogels are water based materials with a low refractive index, which allows for index matching with water-based solvent mixtures. We discuss here various experimental techniques required to handle specifically hydrogel spheres as opposed to other transparent materials.

View Article and Find Full Text PDF

We study the dynamic process occurring when a granular assembly is displaced by a solid impactor. The momentum transfer from the impactor to the target is shown to occur through sporadic, normal collisions of high force carrying grains at the intruder surface. We therefore describe the stopping force of the impact through a collisional-based model.

View Article and Find Full Text PDF

We study experimentally and computationally the dynamics of granular flow during impacts where intruders strike a collection of disks from above. In the regime where granular force dynamics are much more rapid than the intruder motion, we find that the particle flow near the intruder is proportional to the instantaneous intruder speed; it is essentially constant when normalized by that speed. The granular flow is nearly divergence free and remains in balance with the intruder, despite the latter's rapid deceleration.

View Article and Find Full Text PDF

We propose a theoretical framework for predicting the protocol dependence of the jamming transition for frictionless spherical particles that interact via repulsive contact forces. We study isostatic jammed disk packings obtained via two protocols: isotropic compression and simple shear. We show that for frictionless systems, all jammed packings can be obtained via either protocol.

View Article and Find Full Text PDF

We have explored isotropically jammed states of semi-2D granular materials through cyclic compression. In each compression cycle, systems of either identical ellipses or bidisperse disks transition between jammed and unjammed states. We determine the evolution of the average pressure P and structure through consecutive jammed states.

View Article and Find Full Text PDF

The surface structure of converging thin fluid films displays self-similar behavior, as was shown in the work by Diez et al. [Q. Appl.

View Article and Find Full Text PDF

An established aspect of force transmission in quasistatic deformation of granular media is the existence of a dual network of strongly versus weakly loaded particles. Despite significant interest, the regulation of strong and weak forces through the contact network remains poorly understood. We examine this aspect of force transmission using data on microstructural fabric from: (I) three-dimensional discrete element models of grain agglomerates of bonded subspheres constructed from in situ synchrotron microtomography images of silica sand grains under unconfined compression and (II) two-dimensional assemblies of unbonded photoelastic circular disks submitted to biaxial compression under constant volume.

View Article and Find Full Text PDF

We experimentally study nonlinear force propagation into granular material during impact from an intruder, and we explain our observations in terms of the nonlinear grain-scale force relation. Using high-speed video and photoelastic particles, we determine the speed and spatial structure of the force response just after impact. We show that these quantities depend on a dimensionless parameter, M^{'}=t_{c}v_{0}/d, where v_{0} is the intruder speed at impact, d is the particle diameter, and t_{c} is the collision time for a pair of grains impacting at relative speed v_{0}.

View Article and Find Full Text PDF

This article presents a new force model for performing quantitative simulations of dense granular materials. Interactions between multiple contacts (MC) on the same grain are explicitly taken into account. Our readily applicable MC-DEM method retains all the advantages of discrete-element method simulations and does not require the use of costly finite-element methods.

View Article and Find Full Text PDF

If you walk on sand, it supports your weight. How do the disordered forces between particles in sand organize, to keep you from sinking? This simple question is surprisingly difficult to answer experimentally: measuring forces in three dimensions, between deeply buried grains, is challenging. Here we describe experiments in which we have succeeded in measuring forces inside a granular packing subject to controlled deformations.

View Article and Find Full Text PDF

We use a Markov transition matrix-based analysis to explore the structures and structural transitions in a three-dimensional assembly of hydrogel spheres under cyclic uniaxial compression. We apply these methods on experimental data obtained from a packing of nearly frictionless hydrogel balls. This allows an exploration of the emergence and evolution of mesoscale internal structures - a key micromechanical property that governs self-assembly and self-organization in dense granular media.

View Article and Find Full Text PDF

Much recent effort has focused on glassy and jamming properties of spherical particles. Very little is known about such phenomena for nonspherical particles, and we take a first step by studying ellipses. We find important differences between the dynamical and structural properties of disks and two-dimensional ellipses subject to continuous Couette shear.

View Article and Find Full Text PDF

We study the stick-slip behavior of a granular bed of photoelastic disks sheared by a rough slider pulled along the surface. Time series of a proxy for granular friction are examined using complex systems methods to characterize the observed stick-slip dynamics of this laboratory fault. Nonlinear surrogate time series methods show that the stick-slip behavior appears more complex than a periodic dynamics description.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionl42ls8no895evtbn0bnuchr078f7t884): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once