Previous research has indicated that a potentially large portion of root-respired CO can move internally through tree xylem, but these reports are relatively scarce and have generally been limited to short observations. Our main objective was to provide a continuous estimate of the quantity and variability of root-respired CO that moves either internally through the xylem (F ) or externally through the soil to the atmosphere (F ) over most of a growing season. Nine trees were measured in a Populus deltoides stand for 129 days from early June to mid-October.
View Article and Find Full Text PDFTight coupling between below-ground autotrophic respiration and the availability of recently assimilated carbon (C) has become a paradigm in the ecophysiological literature. Here, we show that stored carbohydrates can decouple respiration from assimilation for prolonged periods by mobilizing reserves from transport roots to absorptive roots. We permanently disrupted the below-ground transfer of recently assimilated C using stem girdling and root trenching and measured soil CO efflux for over 1 yr in longleaf pine (Pinus palustris), a species that has large reserves of stored carbohydrates in roots.
View Article and Find Full Text PDFCarbon dioxide (CO2) released from respiring cells in the stems of trees (RS) can diffuse radially to the atmosphere (EA) or dissolve in xylem sap and move internally in the tree (FT). Previous studies have observed that EA decreases as stem or branch diameter increases, but the cause of this relationship has not been determined, nor has the relationship been confirmed between stem diameter and RS, which includes both EA and FT. In this study, for the first time the mass balance technique was used to estimate RS of stems of Liriodendron tulipifera L.
View Article and Find Full Text PDFStomatal conductance directly modifies plant water relations and photosynthesis. Many environmental factors affecting the stomatal conductance have been intensively studied but temperature has been largely neglected, even though it is one of the fastest changing environmental variables and it is rising due to climate change. In this study, we describe how stomata open when the temperature increases.
View Article and Find Full Text PDFClimate change is increasing drought frequency, which may affect symbiotic N fixation (SNF), a process that facilitates ecosystem recovery from disturbance. Here, we assessed the effect of drought frequency on the ecophysiology and SNF rate of a common N -fixing tree in eastern US forests. We grew Robinia pseudoacacia seedlings under the same mean soil moisture, but with different drought frequency caused by wet-dry cycles of varying periodicity.
View Article and Find Full Text PDFClimate projections from 20 downscaled global climate models (GCMs) were used with the 3-PG model to predict the future productivity and water use of planted loblolly pine (Pinus taeda) growing across the southeastern United States. Predictions were made using Representative Concentration Pathways (RCP) 4.5 and 8.
View Article and Find Full Text PDFThe effect of temperature on stomatal conductance (gs) and corresponding gas exchange parameters was studied in two tree species with contrasting leaf anatomy and ecophysiology-a broadleaf angiosperm, Populus deltoides x nigra (poplar), and a needle-leaf gymnosperm, Pinus taeda (loblolly pine). Experiments were conducted in growth chambers across a leaf temperature range of 19-48°C. Manipulations of temperature were done in well-watered and drought soil conditions and under ambient (400 ppm) and elevated (800 ppm) air CO2 concentrations.
View Article and Find Full Text PDFThe composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture.
View Article and Find Full Text PDFTo accurately estimate stem respiration (R), measurements of both carbon dioxide (CO) efflux to the atmosphere (E) and internal CO flux through xylem (F) are needed because xylem sap transports respired CO upward. However, reports of seasonal dynamics of F and E are scarce and no studies exist in Mediterranean species under drought stress conditions. Internal and external CO fluxes at three stem heights, together with radial stem growth, temperature, sap flow and shoot water potential, were measured in Quercus pyrenaica Willd.
View Article and Find Full Text PDFStem CO2 efflux (ES) plays an important role in the carbon balance of forest ecosystems. However, its primary controls at the global scale are poorly understood and observation-based global estimates are lacking. We synthesized data from 121 published studies across global forest ecosystems and examined the relationships between annual ES and biotic and abiotic factors at individual, biome, and global scales, and developed a global gridded estimate of annual ES .
View Article and Find Full Text PDFMost investigations of plant responses to changes in temperature have focused on a constant increase in mean day/night temperature without considering how differences in temperature cycles can affect physiological processes and growth. To test the effects of changes in growth temperature on foliar carbon balance and plant growth, we repeatedly exposed poplar saplings (Populus deltoides × nigra) to temperature cycles consisting of 5 days of a moderate (M, +5 °C) or extreme (E, +10 °C) increase in temperature followed by 5 days of a moderate (M, -5 °C) or extreme (E, -10 °C) decrease in temperature, with respect to a control treatment (C, 23.4 °C).
View Article and Find Full Text PDFThere is recent clear evidence that an important fraction of root-respired CO2 is transported upward in the transpiration stream in tree stems rather than fluxing to the soil. In this study, we aimed to quantify the contribution of root-respired CO2 to both soil CO2 efflux and xylem CO2 transport by manipulating the autotrophic component of belowground respiration. We compared soil CO2 efflux and the flux of root-respired CO2 transported in the transpiration stream in girdled and nongirdled 9-yr-old oak trees (Quercus robur) to assess the impact of a change in the autotrophic component of belowground respiration on both CO2 fluxes.
View Article and Find Full Text PDFRecent studies have provided evidence of a large flux of root-respired CO 2 in the transpiration stream of trees. In our study, we investigated the potential impact of this internal CO 2 transport on aboveground carbon assimilation and CO 2 efflux. To trace the transport of root-respired CO 2, we infused a (13)C label at the stem base of field-grown Populus deltoides Bartr.
View Article and Find Full Text PDFThe effect of transpiration rate on internal assimilation of CO2 released from respiring cells has not previously been quantified. In this study, detached branches of Populus deltoides were allowed to take up (13)CO2-labelled solution at either high (high label, HL) or low (low label, LL) (13)CO2 concentrations. The uptake of the (13)CO2 label served as a proxy for the internal transport of respired CO2, whilst the transpiration rate was manipulated at the leaf level by altering the vapour pressure deficit (VPD) of the air.
View Article and Find Full Text PDFThe frequency and intensity of heat waves are predicted to increase. This study investigates whether heat waves would have the same impact as a constant increase in temperature with the same heat sum, and whether there would be any interactive effects of elevated [CO2 ] and soil moisture content. We grew Quercus rubra seedlings in treatment chambers maintained at either ambient or elevated [CO2 ] (380 or 700 μmol CO2 mol(-1) ) with temperature treatments of ambient, ambient +3 °C, moderate heat wave (+6 °C every other week) or severe heat wave (+12 °C every fourth week) temperatures.
View Article and Find Full Text PDFUpward transport of CO₂ via the transpiration stream from belowground to aboveground tissues occurs in tree stems. Despite potentially important implications for our understanding of plant physiology, the fate of internally transported CO₂ derived from autotrophic respiratory processes remains unclear. We infused a ¹³CO₂-labeled aqueous solution into the base of 7-yr-old field-grown eastern cottonwood (Populus deltoides) trees to investigate the effect of xylem-transported CO₂ derived from the root system on aboveground carbon assimilation and CO₂ efflux.
View Article and Find Full Text PDFHere, we investigated the effect of different heat-wave intensities applied at two atmospheric CO2 concentrations ([CO2]) on seedlings of two tree species, loblolly pine (Pinus taeda) and northern red oak (Quercus rubra). Seedlings were assigned to treatment combinations of two levels of [CO2] (380 or 700 μmol mol(-1)) and four levels of air temperature (ambient, ambient +3°C, or 7-d heat waves consisting of a biweekly +6°C heat wave, or a monthly +12°C heat wave). Treatments were maintained throughout the growing season, thus receiving equal heat sums.
View Article and Find Full Text PDFPredicted future changes in air temperature and atmospheric CO(2) concentration ([CO(2)]), coupled with altered precipitation, are expected to substantially affect tree growth. Effects on growth may vary considerably across a species range, as temperatures vary from sub-optimal to supra-optimal for growth. We performed an experiment simultaneously at two locations in the current range of loblolly pine, a cool site and a warm site, to examine the effect of future climate conditions on growth of loblolly pine seedlings in contrasting regions of the species range.
View Article and Find Full Text PDFIf an increase in temperature will limit the growth of a species, it will be in the warmest portion of the species distribution. Therefore, in this study we examined the effects of elevated temperature on net carbon assimilation and biomass production of northern red oak (Quercus rubra L.) seedlings grown near the southern limit of the species distribution.
View Article and Find Full Text PDFRespiration consumes a large portion of annual gross primary productivity in forest ecosystems and is dominated by belowground metabolism. Here, we present evidence of a previously unaccounted for internal CO(2) flux of large magnitude from tree roots through stems. If this pattern is shown to persist over time and in other forests, it suggests that belowground respiration has been grossly underestimated.
View Article and Find Full Text PDFWe studied the effect of changes in net photosynthesis (A(net)) on respiration, soluble sugars and carbohydrates in Populus deltoides Bartr. ex Marsh. saplings under controlled environmental conditions by making daily measurements of leaf respiration (R(d)), stem CO(2) efflux and root CO(2) efflux at a constant temperature in growth chambers.
View Article and Find Full Text PDFAlthough some CO(2) released by respiring cells in tree stems diffuses directly to the atmosphere, on a daily basis 15-55% can remain within the tree. High concentrations of CO(2) build up in stems because of barriers to diffusion in the inner bark and xylem. In contrast with atmospheric [CO(2)] of c.
View Article and Find Full Text PDFOxidative respiration is strongly temperature driven. However, in woody stems, efflux of CO(2) to the atmosphere (E (A)), commonly used to estimate the rate of respiration (R (S)), and stem temperature (T (st)) have often been poorly correlated, which we hypothesized was due to transport of respired CO(2) in xylem sap, especially under high rates of sap flow (f (s)). To test this, we measured E (A), T (st), f (s) and xylem sap CO(2) concentrations ([CO(2)*]) in 3-year-old Populus deltoides trees under different weather conditions (sunny and rainy days) in autumn.
View Article and Find Full Text PDFRates of CO efflux of stems and branches are highly variable among and within trees and across stands. Scaling factors have only partially succeeded in accounting for the observed variations. In this study, the resistance to radial CO diffusion was quantified for tree stems of an eastern cottonwood (Populus deltoides Bartr.
View Article and Find Full Text PDFPlants can acquire carbon from sources other than atmospheric carbon dioxide (CO(2)), including soil-dissolved inorganic carbon (DIC). Although the net flux of CO(2) is out of the root, soil DIC can be taken up by the root, transported within the plant, and fixed either photosynthetically or anaplerotically by plant tissues. We tested the ability of Pinus taeda L.
View Article and Find Full Text PDF