Publications by authors named "Robert Newbold"

Narrowing the search for the critical repressor sequence(s) has identified three regions on chromosome 3p (3p12-p21.1, 3p21.2 and 3p21.

View Article and Find Full Text PDF

Frizzled receptors mediate Wnt ligand signalling, which is crucially involved in regulating tissue development and differentiation, and is often deregulated in cancer. In this study, we found that the gene encoding the Wnt receptor frizzled 6 (FZD6) is frequently amplified in breast cancer, with an increased incidence in the triple-negative breast cancer (TNBC) subtype. Ablation of FZD6 expression in mammary cancer cell lines: (1) inhibited motility and invasion; (2) induced a more symmetrical shape of organoid three-dimensional cultures; and (3) inhibited bone and liver metastasis in vivo.

View Article and Find Full Text PDF

The implementation of the Syrian hamster embryo cell transformation assay (SHE CTA) into test batteries and its relevance in predicting carcinogenicity has been long debated. Despite prevalidation studies to ensure reproducibility and minimise the subjective nature of the assay's endpoint, an underlying mechanistic and molecular basis supporting morphological transformation (MT) as an indicator of carcinogenesis is still missing. We found that only 20% of benzo(a)pyrene-induced MT clones immortalised suggesting that, alone, the MT phenotype is insufficient for senescence bypass.

View Article and Find Full Text PDF

An important characteristic of the transcription of a ribosomal RNA gene (rDNA) mediated by DNA-dependent RNA polymerase (Pol) I is its stringent species specificity. SL1/TIF-IB is a key complex for species specificity, but its functional complex has not been reconstituted. Here, we established a novel and highly sensitive monitoring system for Pol I transcription to reconstitute the SL1 activity in which a transcript harboring a reporter gene synthesized by Pol I is amplified and converted into translatable mRNA by the influenza virus RNA-dependent RNA polymerase.

View Article and Find Full Text PDF

Unlabelled: The objective of this study was to determine the mRNA expression for p14 and p16 in a cohort of women with breast cancer.

Materials And Methods: Breast cancer specimens (N= 127) and normal tissue (N=23) specimens were studied. Transcript levels were determined using quantitative polymerase chain reaction (PCR), and were correlated with clinicopathological data collected over 10 years.

View Article and Find Full Text PDF

Unlabelled: Inhibitors of DNA binding (ID) are known to have a role in embryogenesis and oncogenesis. In this study, we analyzed the role of ID1 and ID2 in breast cancer, by assessing associations of mRNA expression with clinicopathological parameters.

Materials And Methods: Breast cancer tissues (n=152) and adjacent normal tissues (n=31) underwent reverse transcription and quantitative- polymerase chain reaction (qPCR).

View Article and Find Full Text PDF

Genotoxicity models are extremely important to assess retroviral vector biosafety before gene therapy. We have developed an in utero model that demonstrates that hepatocellular carcinoma (HCC) development is restricted to mice receiving nonprimate (np) lentiviral vectors (LV) and does not occur when a primate (p) LV is used regardless of woodchuck post-translation regulatory element (WPRE) mutations to prevent truncated X gene expression. Analysis of 839 npLV and 244 pLV integrations in the liver genomes of vector-treated mice revealed clear differences between vector insertions in gene dense regions and highly expressed genes, suggestive of vector preference for insertion or clonal outgrowth.

View Article and Find Full Text PDF

To better understand neuroblastoma differentiation, we used microarray analysis to identify common gene expression changes from three differentiation models. This revealed STMN4 and ROBO2 to be consistently up-regulated in differentiated neuroblastoma cells induced by chromosome 1 transfer, MYCN knockdown, and 9-cis retinoic acid (9cRA). Furthermore, stable expression of transfected STMN4 or ROBO2 induced differentiation in IMR-32 cells.

View Article and Find Full Text PDF

Background: Epigenetic regulation of gene expression is under normal circumstances tightly controlled by the specific methylation of cytosine residues in CpG dinucleotides and coordinated by adjustments in the histone-dependent configuration of chromatin. Following our original report, providing the first description of potential tumor suppressor function associated with the histone methyltransferase SET domain containing 2 (SETD2) in breast cancer, the objective of this study was to determine the expression profiles of 16 further histone-modifier genes in a well annotated cohort of patients with primary operable breast cancer.

Materials And Methods: Breast cancer tissues (n=127) and normal tissues (n=33) underwent RNA extraction and reverse transcription, and histone-modifier gene transcript levels were determined using real-time quantitative PCR.

View Article and Find Full Text PDF

Cell transformation assays (CTAs) have long been proposed as in vitro methods for the identification of potential chemical carcinogens. Despite showing good correlation with rodent bioassay data, concerns over the subjective nature of using morphological criteria for identifying transformed cells and a lack of understanding of the mechanistic basis of the assays has limited their acceptance for regulatory purposes. However, recent drivers to find alternative carcinogenicity assessment methodologies, such as the Seventh Amendment to the EU Cosmetics Directive, have fuelled renewed interest in CTAs.

View Article and Find Full Text PDF

Background: Ubiquitin modification of proteins influences cellular processes relevant to carcinogenesis. CHIP (carboxyl-terminus of Hsc70-interacting protein) is a chaperone-dependent E3 ubiquitin ligase, regulating the stability of heat shock protein 90 (HSP90) interacting proteins. CHIP is implicated in the modulation of estrogen receptor (ESR1) and Her-2/neu (ERBB2) stability.

View Article and Find Full Text PDF

Background: Radiotherapy-induced DNA double-strand breaks (DSBs) are critical cytotoxic lesions. Inherited defects in DNA DSB repair pathways lead to hypersensitivity to ionising radiation, immunodeficiency and increased cancer incidence. A patient with xeroderma pigmentosum complementation group C, with a scalp angiosarcoma, exhibited dramatic clinical radiosensitivity following radiotherapy, resulting in death.

View Article and Find Full Text PDF

Inability to correctly repair DNA damage is known to play a role in the development of breast cancer. Single nucleotide polymorphisms (SNPs) of DNA repair genes have been identified, which modify the DNA repair capacity, which in turn may affect the risk of developing breast cancer. To assess whether alterations in DNA repair genes contribute to breast cancer, we genotyped 62 SNPs in 29 genes in 1,109 Cypriot women with breast cancer and 1,177 age-matched healthy controls.

View Article and Find Full Text PDF

Background: SATB1 is a nuclear protein that has been recently reported to be a 'genome organizer' which delineates specific epigenetic modifications at target gene loci, directly up-regulating metastasis-associated genes while down-regulating tumor-suppressor genes. In this study, the level of mRNA expression of SATB1 and SATB2 were assessed in normal and malignant breast tissue in a cohort of women with breast cancer and correlated to conventional clinico-pathological parameters.

Materials And Methods: Breast cancer tissues (n = 115) and normal background tissues (n = 31) were collected immediately after excision during surgery.

View Article and Find Full Text PDF

Metaphase comparative genomic hybridisation (CGH) studies indicate that chromosomes 4, 5, 6, 13, 14, 15 and 18 are frequently deleted in primary ovarian cancers (OCs). Therefore we used microcell-mediated chromosome transfer (MMCT) to establish the functional effects of transferring normal copies of these chromosomes into 2 epithelial OC cell lines (TOV112D and TOV21G). The in vitro neoplastic phenotype (measured as anchorage dependent and independent growth and invasion) was compared between recipient OC cell lines and multiple MMCT hybrids.

View Article and Find Full Text PDF

Complex I (NADH:ubiquinone oxidoreductase) is the first and largest multimeric complex of the mitochondrial respiratory chain. Human complex I comprises seven subunits encoded by mitochondrial DNA and 38 nuclear-encoded subunits that are assembled together in a process that is only partially understood. To date, mutations causing complex I deficiency have been described in all 14 core subunits, five supernumerary subunits, and four assembly factors.

View Article and Find Full Text PDF

Chromosomes occupy non-random spatial positions in interphase nuclei. It remains unclear what orchestrates this high level of organisation. To determine how the nuclear environment influences the spatial positioning of chromosomes, we utilised a panel of stable mouse hybrid cell lines carrying a single, intact human chromosome.

View Article and Find Full Text PDF

The DNA repair pathway is known to play a role in the etiology of breast cancer. A number of studies have demonstrated that common germline variants in genes involved in the DNA repair pathway influence breast cancer risk. To assess whether alterations in DNA repair genes contribute to breast cancer, we genotyped 12 single nucleotide polymorphisms (SNPs) in 1,109 Cypriot women with breast cancer and 1,177 age-matched healthy controls.

View Article and Find Full Text PDF

Background: Vitamin B12 (cobalamin) is an essential cofactor in several metabolic pathways. Intracellular conversion of cobalamin to its two coenzymes, adenosylcobalamin in mitochondria and methylcobalamin in the cytoplasm, is necessary for the homeostasis of methylmalonic acid and homocysteine. Nine defects of intracellular cobalamin metabolism have been defined by means of somatic complementation analysis.

View Article and Find Full Text PDF

Population-based studies have reported significant associations between specific genetic polymorphisms and breast cancer susceptibility. A number of studies have demonstrated that common variants of genes involved in the DNA repair pathway act as low penetrance breast cancer susceptibility alleles. We aimed to investigate the association of single nucleotide polymorphisms (SNPs) in the DNA repair genes XRCC1, XRCC2 and XRCC3 and breast cancer in MASTOS, a population-based case-control study of 1,109 Cypriot women with breast cancer diagnosed between 40 and 70 years and 1,177 age-matched healthy controls.

View Article and Find Full Text PDF

Background: Telomerase is a ribonucleoprotein enzyme that synthesises telomeres in human germ cells, embryogenesis and in cancer, maintaining chromosomal length, stability and cellular immortality. The hTERT gene is the rate-limiting determinant of telomerase reactivation during immortalization and malignant transformation. Telomeric DNA-binding proteins have been attracting increasing interest due to their essential role in the regulation of telomeric DNA length and in protecting against chromosomal end-to-end fusion.

View Article and Find Full Text PDF

Although most components of the mitochondrial translation apparatus are encoded by nuclear genes, all known molecular defects associated with impaired mitochondrial translation are due to mutations in mitochondrial DNA. We investigated two siblings with a severe defect in mitochondrial translation, reduced levels of oxidative phosphorylation complexes containing mitochondrial DNA (mtDNA)-encoded subunits, and progressive hepatoencephalopathy. We mapped the defective gene to a region on chromosome 3q containing elongation factor G1 (EFG1), which encodes a mitochondrial translation factor.

View Article and Find Full Text PDF

Background: Telomeres are specialized nucleoprotein structures at chromosome ends that undergo dynamic changes after each cell cycle. Understanding the mechanisms of telomere dynamics is critically dependent on the ability to accurately measure telomere length in a cell population of interest. Techniques such as Southern blot, which measures average telomere length, and quantitative fluorescence in situ hybridization (Q-FISH), which can estimate telomere length in individual chromosomes, are limited in their capacity to determine the distribution of cells with differing telomere lengths in a given cell population.

View Article and Find Full Text PDF

BACKGROUND: Telomerase is a ribonucleoprotein enzyme that synthesises telomeres after cell division and maintains chromosomal length and stability thus leading to cellular immortalisation. The hTERT (human telomerase reverse transcriptase) subunit seems to be the rate-limiting determinant of telomerase and knowledge of factors controlling hTERT transcription may be useful in therapeutic strategies. The hTERT promoter contains binding sites for c-Myc and there is experimental and in vitro evidence that c-Myc may increase hTERT expression.

View Article and Find Full Text PDF

Loss of heterozygosity (LOH) on 8p occurs at high frequencies in many tumor types, including colorectal carcinoma (CRC). We previously used microcell-mediated chromosome transfer (MMCT) into the CRC cell line SW620 to map a approximately 7.7-Mb colorectal cancer-suppressor region (CRCSR) at 8p22-23.

View Article and Find Full Text PDF