Antibiotics are frequently detected in wastewater, but often are poorly removed in conventional wastewater treatment processes. Combining microalgal and nitrifying bacterial processes may provide synergistic removal of antibiotics and ammonium. In this research, we studied the removal of the antibiotic sulfamethoxazole (SMX) in two different reactors: a conventional nitrifying bacterial membrane aerated biofilm reactor (bMABR) and algal-bacterial membrane aerated biofilm reactor (abMABR) systems.
View Article and Find Full Text PDFBiofilms are highly resistant to antimicrobials, often causing chronic infections. Combining antimicrobials with low-frequency ultrasound (LFU) enhances antimicrobial efficiency, but little is known about the underlying mechanisms. Biofilm physical characteristics, which depend on factors such as growth conditions and age, can have significant effects on inactivation efficiency.
View Article and Find Full Text PDFWater age in drinking water systems is often used as a proxy for water quality but is rarely used as a direct input in assessing microbial risk. This study directly linked water ages in a premise plumbing system to concentrations of via a growth model. In turn, the concentrations were used for a quantitative microbial risk assessment to calculate the associated probabilities of infection () and clinically severe illness () due to showering.
View Article and Find Full Text PDFWe used bench-scale tests and mathematical modeling to explore chemical oxygen demand (COD) removal rates in a moving-bed biofilm reactor (MBBR) for winery wastewater treatment, using either urea or nitrate as a nitrogen source. With urea addition, the COD removal fluxes ranged from 34 to 45 gCOD/m-d. However, when nitrate was added, fluxes increased up to 65 gCOD/m-d, twice the amount reported for aerobic biofilms for winery wastewater treatment.
View Article and Find Full Text PDFTemperature is known to have an important effect on the morphology and removal fluxes of conventional, co-diffusional biofilms. However, much less is known about the effects of temperature on membrane-aerated biofilm reactors (MABRs). Experiments and modeling were used to determine the effects of temperature on the removal fluxes, biofilm thickness and morphology, and biofilm microbial community structure of nitrifying MABRs.
View Article and Find Full Text PDFHigher water ages are linked with water quality decline as chlorine dissipates, temperatures become more favorable for microbial growth, and metals and organic matter leach from the pipes. Water fixtures with automated purging devices can limit water age in premise plumbing systems, but also increase water use. To develop purging strategies that lower age while also minimizing water use, the stochastic nature of water demands must be considered.
View Article and Find Full Text PDFPerchlorate and chlorate are endocrine disruptors considered emerging contaminants (ECs). Both oxyanions are commonly associated with anthropogenic contamination from fertilizers, pesticides, explosives, and disinfection byproducts. However, the soils of the Atacama Desert are the most extensive natural reservoirs of perchlorate in the world, compromising drinking water sources in northern Chile.
View Article and Find Full Text PDFWe consistently find a band of high cell density develop within heterotrophic membrane-aerated biofilms. This study reports and attempts to explain this unique behavior. Biofilm density affects volumetric reaction rates, biofilm growth rates, substrate diffusion, and mechanical behavior.
View Article and Find Full Text PDFThere is increasing interest in membrane-aerated biofilm reactors (MABRs), due to their energy efficiency and ability to intensify wastewater treatment. While MABR membranes play a key role, supporting biofilms and transferring O, little research has addressed how membrane types impact MABR performance. This research compared two types of membranes used in commercial MABRs: a silicone hollow-fibre membrane and a 'micromembrane cord,' consisting of an inert cord surrounded by fine proprietary polymeric membranes.
View Article and Find Full Text PDFRheometry is an experimental technique widely used to determine the mechanical properties of biofilms. However, it characterizes the bulk mechanical behavior of the whole biofilm. The effects of biofilm mechanical heterogeneity on rheometry measurements are not known.
View Article and Find Full Text PDFThere is increasing interest in thiosulfate-driven denitrification for low C/N wastewater treatment, but the denitrification performance varies with the thiosulfate oxidation pathways. Models have been developed to predict the products of denitrification, but few consider thiosulfate reduction to elemental sulfur (S), an undesirable reaction that can intensify electron competition with denitrifying enzymes. In this study, the model using indirect coupling of electrons (ICE) was developed to predict S formation and electron competition during thiosulfate-driven denitrification.
View Article and Find Full Text PDFPerchlorate is a widespread drinking water contaminant with regulatory standards ranging from 2 to 18 μg/L. The hydrogen-based membrane-biofilm reactor (MBfR) can effectively reduce perchlorate, but it is challenging to achieve low-µg/L levels. We explored chlorate addition to increase the abundance of perchlorate-reducing bacteria (PRB) and improve removals.
View Article and Find Full Text PDFSulfide-based biofilm processes are increasingly used for wastewater denitrification, yet little is known about the extracellular polymeric substance (EPS) composition of sulfide-oxidizing biofilms. This can have an important impact on biofilm mechanical strength and stability. In this research, the properties and roles of EPS components in biofilm stability were investigated.
View Article and Find Full Text PDFThe foam-aerated biofilm reactor (FABR) is a novel biofilm process that can simultaneously remove carbon and nitrogen from wastewater. A porous polyurethane foam sheet forms an interface between wastewater and aerated water, making it a counter-diffusional biofilm process similar to the membrane-aerated biofilm reactor (MABR). However, it is not clear how biofilm develops the foam interior, and how this impacts mass transfer and performance.
View Article and Find Full Text PDFBiofilms are typically heterogeneous in morphology, structure, and composition, resulting in nonuniform mechanical properties. The distribution of mechanical properties, in turn, determines the biofilm behavior, such as deformation and detachment. Most biofilm models neglect biofilm heterogeneity, especially at the microscale.
View Article and Find Full Text PDFEncapsulation is a promising technology to retain and protect autotrophs for biological nitrogen removal. One-dimensional biofilm models have been used to describe encapsulated systems; they do not, however, incorporate chemical sorption to the encapsulant nor do they adequately describe cell growth and distribution within the encapsulant. In this research we developed a new model to describe encapsulated growth and activity of Nitrosomonas europaea, incorporating ammonium sorption to the alginate encapsulant.
View Article and Find Full Text PDFThe oxidation of arsenic (As) is a key step in its removal from water, and biological oxidation may provide a cost-effective and sustainable method. The biofilm-formation ability of Ancylobacter sp. TS-1, a novel chemolithoautotrophic As oxidizer, was studied for four materials: polypropylene, graphite, sand, and zeolite.
View Article and Find Full Text PDFThe mechanical properties of biofilms can be used to predict biofilm deformation under external forces, for example, under fluid flow. We used magnetic tweezers to spatially map the compliance of Pseudomonas aeruginosa biofilms at the microscale, then applied modeling to assess its effects on biofilm deformation. Biofilms were grown in capillary flow cells with Reynolds numbers (Re) ranging from 0.
View Article and Find Full Text PDFThe catalytic hydrogel membrane reactor (CHMR) is a promising new technology for hydrogenation of aqueous contaminants in drinking water. It offers numerous benefits over conventional three-phase reactors, including immobilization of nano-catalysts, high reactivity, and control over the hydrogen (H) supply concentration. In this study, a computational model of the CHMR was developed using AQUASIM and calibrated with 32 experimental datasets for a nitrite (NO)-reducing CHMR using palladium (Pd) nano-catalysts (~4.
View Article and Find Full Text PDFThe H-based membrane biofilm reactor (H-MBfR) is an emerging technology for removal of nitrate (NO) in water supplies. In this research, a lab-scale H-MBfR equipped with a separated CO providing system and a microsensor measuring unit was developed for NO removal from synthetic groundwater. Experimental results show that efficient NO reduction with a flux of 1.
View Article and Find Full Text PDFBiofilms commonly develop in flowing aqueous environments, where the flow causes the biofilm to deform. Because biofilm deformation affects the flow regime, and because biofilms behave as complex heterogeneous viscoelastic materials, few models are able to predict biofilm deformation. In this study, a phase-field (PF) continuum model coupled with the Oldroyd-B constitutive equation was developed and used to simulate biofilm deformation.
View Article and Find Full Text PDFEnviron Sci Technol
October 2019
Gaseous compounds, such as CH, H, and O, are commonly produced or consumed during wastewater treatment. Traditionally, these gases need to be removed or delivered using gas sparging or liquid heating, which can be energy intensive with low efficiency. Hydrophobic membranes are being increasingly investigated in wastewater treatment and resource recovery.
View Article and Find Full Text PDFElemental sulfur (S ) can serve as an electron donor for water and wastewater denitrification, but few researchers have addressed the kinetics of S -based reduction of nitrate (NO ), nitrite (NO ), and nitrous oxide (N O). In addition, S -based denitrifying biofilms are counter-diffusional. This is because the electron donor (S ) is supplied from the biofilm attachment surface while the acceptor, for example, NO , is supplied from the bulk liquid.
View Article and Find Full Text PDFHeterogeneous hydrogenation catalysis is a promising approach for treating oxidized contaminants in drinking water, but scale-up has been limited by the challenge of immobilization of the catalyst while maintaining efficient mass transport and reaction kinetics. We describe a new process that addresses this issue: the catalytic hydrogel membrane (CHM) reactor. The CHM consists of a gas-permeable hollow-fiber membrane coated with an alginate-based hydrogel containing catalyst nanoparticles.
View Article and Find Full Text PDFOxyanions, such as nitrate, perchlorate, selenate, and chromate are commonly occurring contaminants in groundwater, as well as municipal, industrial, and mining wastewaters. Microorganism-mediated reduction is an effective means to remove oxyanions from water by transforming oxyanions into harmless and/or immobilized forms. To carry out microbial reduction, bacteria require a source of electrons, called the electron-donor substrate.
View Article and Find Full Text PDF