The force experienced while inserting an 18-gauge Tuohy needle into the epidural space or dura is one of only two feedback components perceived by an anaesthesiologist to deduce the needle tip position in a patient's spine. To the best of the authors knowledge, no x-ray validated measurements of these forces are currently available to the public. A needle insertion force recording during an automated insertion of an 18-gauge Tuohy needle into human vertebral segments of four female donors was conducted.
View Article and Find Full Text PDFMagnetic induction tomography is used to image the electrical properties inside a region of interest. The systems differ in the construction of the receiver channels which can be composed of coils or gradiometers. We will compare and discuss the image quality subject to two different types of receivers, different arrangements for the exciters and receivers and different signal-to-noise ratios.
View Article and Find Full Text PDFMagnetic induction tomography (MIT) is a low-resolution imaging modality used for reconstructing the changes of the passive electrical properties in a target object. For an imaging system, it is very important to give forecasts about the image quality. Both the maximum resolution and the correctness of the location of the inhomogeneities are of major interest.
View Article and Find Full Text PDFMagnetic induction tomography (MIT) is a low-resolution imaging modality for reconstructing the changes of the complex conductivity in an object. MIT is based on determining the perturbation of an alternating magnetic field, which is coupled from several excitation coils to the object. The conductivity distribution is reconstructed from the corresponding voltage changes induced in several receiver coils.
View Article and Find Full Text PDFThe basic purpose of electrical impedance tomography (EIT) is the reconstruction of conductivity distributions. While multifrequency measurements are of common use, the majority of reconstructed images are still conductivity distributions from one single frequency. More interesting than conductivities at each frequency are electrical tissue parameters, which describe the frequency-dependent conductivity changes of tissue.
View Article and Find Full Text PDFMagnetic induction tomography (MIT) is a technique to image the passive electrical properties (i.e. conductivity, permittivity, permeability) of biological tissues.
View Article and Find Full Text PDFMagnetic induction tomography (MIT) of biological tissue is used for the reconstruction of the complex conductivity distribution kappa inside the object under investigation. It is based on the perturbation of an alternating magnetic field caused by the object and can be used in all applications of electrical impedance tomography (EIT) such as functional lung monitoring and assessment of tissue fluids. In contrast to EIT, MIT does not require electrodes and magnetic fields can also penetrate non-conducting barriers such as the skull.
View Article and Find Full Text PDFCurrently only ionizing or invasive methods are used in clinical applications for the monitoring of extracellular lung water. Alternatively a method called focused conductivity spectroscopy (FCS) is suggested, which aims at reconstructing a pulmonary edema index (PEIX) by measuring the electrical conductivity of the region of interest (ROI) at several frequencies. In contrast to electrical impedance tomography (EIT) a minimum number of strategically placed electrodes is used.
View Article and Find Full Text PDFMagnetic induction tomography (MIT) is a low-resolution imaging modality which aims at the three-dimensional (3D) reconstruction of the electrical conductivity in objects from alternating magnetic fields. In MIT systems the magnetic field perturbations to be detected are very small when compared to the excitation field (ppm range). The voltage which is induced by the excitation field in the receiver coils must be suppressed for providing sufficient dynamic range.
View Article and Find Full Text PDFMagnetic induction tomography (MIT) of biological tissue is used to reconstruct the changes in the complex conductivity distribution inside an object under investigation. The measurement principle is based on determining the perturbation DeltaB of a primary alternating magnetic field B0, which is coupled from an array of excitation coils to the object under investigation. The corresponding voltages DeltaV and V0 induced in a receiver coil carry the information about the passive electrical properties (i.
View Article and Find Full Text PDFThe detection and continuous monitoring of brain oedema is of particular interest in clinical applications because existing methods (invasive measurement of the intracranial pressure) may cause considerable distress for the patients. A new non-invasive method for continuous monitoring of an oedema promises the use of multi-frequency magnetic induction tomography (MIT). MIT is an imaging method for reconstructing the changes of the conductivity deltakappa in a target object.
View Article and Find Full Text PDFPlanar gradiometers (PGRAD) have particular advantages compared to solenoid receiver coils in magnetic induction tomography (MIT) for biological objects. A careful analysis of the sensitivity maps has to be carried out for perturbations within conducting objects in order to understand the performance of a PGRAD system and the corresponding implications for the inverse problem of MIT. We calculated and measured sensitivity maps for a single MIT-channel and a cylindrical tank (diameter 200 mm) with a spherical perturbation (diameter 50 mm) and with conductivities in the physiological range (0.
View Article and Find Full Text PDFMagnetic induction tomography (MIT) is used for reconstructing the changes of the conductivity in a target object using alternating magnetic fields. Applications include, for example, the non-invasive monitoring of oedema in the human brain. A powerful software package has been developed which makes it possible to generate a finite element (FE) model of complex structures and to calculate the eddy currents in the object under investigation.
View Article and Find Full Text PDFA major drawback of electrical impedance tomography is the poor quality of the conductivity images, i.e., the low spatial resolution as well as large errors in the reconstructed conductivity values.
View Article and Find Full Text PDF