Both nanopore-based DNA sequencing and CRISPR/Cas-based gene editing represent groundbreaking innovations in molecular biology and genomics, offering unprecedented insights into and tools for working with genetic information. For students, reading, editing, and even writing DNA will be part of their everyday life. We have developed a laboratory procedure that includes (i) the biosynthesis of a guide RNA for, (ii) targeting Cas9 to specifically linearize the pBR322 plasmid, and (iii) the identification of the cutting site through nanopore DNA sequencing.
View Article and Find Full Text PDFBackground: We benchmarked sequencing technology and assembly strategies for short-read, long-read, and hybrid assemblers in respect to correctness, contiguity, and completeness of assemblies in genomes of Francisella tularensis. Benchmarking allowed in-depth analyses of genomic structures of the Francisella pathogenicity islands and insertion sequences. Five major high-throughput sequencing technologies were applied, including next-generation "short-read" and third-generation "long-read" sequencing methods.
View Article and Find Full Text PDFMicrobiol Resour Announc
July 2020
is a purple bacterium with complex genomic architecture. Here, a draft genome is reported for strain 2.4.
View Article and Find Full Text PDFNanopore based DNA-sequencing delivers long reads, thereby simplifying the decipherment of bacterial communities. Since its commercial appearance, this technology has been assigned several attributes, such as its error proneness, comparatively low cost, ease-of-use, and, most notably, aforementioned long reads. The technology as a whole is under continued development.
View Article and Find Full Text PDF